Surface Reconstruction with MLS

Tobias Martin

CS7960, Spring 2006, Feb 23
Literature

• *An Adaptive MLS Surface for Reconstruction with Guarantees*, T. K. Dey and J. Sun

• *A Sampling Theorem for MLS Surfaces*, Peer-Timo Bremer, John C. Hart
An Adaptive MLS Surface for Reconstruction with Guarantee

Tamil K. Dey and Jian Sun
Implicit MLS Surfaces

\[I(x) = \frac{\sum_{p \in P} [(x - p)^T v_p] \theta_p(x)}{\sum_{p \in P} \theta_p(x)} \]

- Zero-level-set of function \(I(x) \) defines \(S \)
 - Normals are important, because points are projected along the normals
Motivation

• Original smooth, closed surface S.

• Given Conditions:
 – Sampling Density
 – Normal Estimates
 – Noise

→ Design an implicit function $\mathcal{I}(x)$ whose zero set recovers S.
Motivation

- So far, only uniform sampling condition.
- Restriction:
 - The red arc requires 10^4 samples because of small feature.
Motivation

• Establish an *adaptive* sampling condition, similar to the one of Amenta and Bern.

→ Incorporate local feature size in sampling condition.
 • Red arc only requires 6 samples.
Sampling Condition

• Recent Surface Reconstruction algorithms are based on noise free samples.
 → Notion of ε-sample has to be modified.

• P is a noisy (ε, α)-sample if
 – Every $z \in S$ to its closest point in P is $< \varepsilon \text{lfs}(z)$.
 – The distance for $p \in P$ to $z = \text{proj}(p)$ is $< \varepsilon^2 \text{lfs}(z)$.
 – Every $p \in P$ has a normal which has an angle with its corresponding projected surface point $< \varepsilon$.
 – The number of sample points inside $B(x, \varepsilon \text{lfs}(\text{proj}(x)))$ is less than a small number α.

→ Note that it is difficult to check whether a sample P is a noisy (ε, α)-sample.
Effect of nearby samples

• Points within a small neighborhood are predictably distributed within a small slab:

Lemma 1 For $\rho \leq 1$ and $\varepsilon \leq 0.1$, any sample point inside $B(z, \rho lfs(z))$ lies inside the slab bounded by the planes PL_+ and PL_- where

\[
\omega = \frac{(\varepsilon^2 + \rho)^2}{2(1 - \varepsilon^2)^2} + \frac{(1 + \rho)}{1 - \varepsilon^2} \varepsilon^2.
\]
Adaptive MLS

• \(\mathcal{J}(x) \) at point \(x \) should be decided primarily by near sample points.
 → Choose \(\theta_p(x) \) such, that sample points outside a neighborhood have less effect.
 → Use Gaussian functions.
 → Their width control influence of samples.

• Make width dependent on \(lfs \)
 → Define width as fraction of \(lfs \)
Adaptive MLS

\[\mathcal{I}(x) = \frac{\sum_{p \in P}[(x - p)^T v_p] \theta_p(x)}{\sum_{p \in P} \theta_p(x)} \]

- Choice of weighting function:

\[\theta_p(x) = e^{-\frac{||x-p||^2}{[\rho \text{lfs}(\tilde{x})]^2}} \]

→ Many sample points at \(p \) which contribute to point \(x \).
Adaptive MLS

\[I(x) = \frac{\sum_{p \in P}[(x - p)^T w_p] \theta_p(x)}{\sum_{p \in P} \theta_p(x)} \]

- Choice of weighting function:

\[\theta(x)_p = e^{-\frac{\|x - p\|^2}{[\rho lfs(\tilde{p})]^2}} \]

→ Sample point \(p \) has a constant weight(\(e^{-\frac{1}{[\rho \cos \beta]^2}} \)).

→ Influence of \(p \) does not decrease with distance.
Adaptive MLS

• Compromise: Take fraction of $\sqrt{\text{lfs}(\tilde{x})\text{lfs}(\tilde{p})}$ as width of Gaussian.

→ Weighting function decreases as p goes far away from x.
→ Weighting is small for small features, i.e. small features do not require more samples.
Contribution of distant samples

• Show that the effect of distant sample points can be bounded.
 → Rely on nearby features.

• How to show that?
Contribution of distant samples

Lemma 2 For $\rho \leq 0.4$ and $\varepsilon \leq 0.1$, the number of sample points inside $B(x, \frac{\rho}{2}\text{lfs}(\bar{x}))$ is less than λ where

$$\lambda = \alpha$$

if $\rho \leq 2\varepsilon$

$$= \frac{75\rho^3 \alpha}{\varepsilon^3}$$

otherwise.
Contribution of distant samples

- Once there is a bound on the number of samples in $B_{\rho/2}$, we lemma 3 is used which shows an upper bound on its influence, i.e.

Lemma 3 If $\rho \leq 0.4$, $\varepsilon \leq 0.1$ and $r \geq 5\rho$,

$$
\sum_{p \in B_{\rho/2} \cap S_x(w_i, \rho)} I_p(x) \leq \lambda e^{-\frac{r w_i}{(1+2r)\rho^2}} \cdot \frac{W_i^s}{\rho^{2t}} f(\tilde{x})^{s-2t}
$$
Contribution of distant samples

• Using lemma 3 they prove the main theorem:

Theorem 1 If $\rho \leq 0.4$, $\varepsilon \leq 0.1$ and $r \geq 5\rho$, then for any $x \in \mathbb{R}^3$

$$\sum_{\rho \notin B(x,rf(\bar{x}))} I_p(x) \leq C_1 \lambda \cdot \frac{r^2 + r\rho + \rho^2}{\rho^2} e^{-\frac{r^2}{(1+2r)\rho^2}} \cdot \frac{r^s}{\rho^{2t}} f(\bar{x})^{s-2t}$$
Contribution of distant samples

- The space outside $B(x, \text{rlfs}(%20\text{proj}(x)))$ can be decomposed in an infinite number of shells, i.e.

$$
\sum_{p \notin B(x, rf(x))} I_p(x) = \sum_{i=0}^{\infty} \sum_{p \in S_x(w_i, \rho)} I_p(x)
$$

→ The influence of all points outside is equal to the influence of all the points in the shells which was bounded by lemma 3.

→ Therefore, the contributions of points outside $B(x, \text{rlfs}(%20\text{proj}(x)))$ can be bounded.
Algorithm

AMLS(P)

NORMAL ESTIMATION:
Compute Del(P)
for each point p with big Delaunay ball
compute the normal n_p

FEATURE ESTIMATION:
for each p ∈ P estimate f(\tilde{p})

PROJECTION:
for each p ∈ P
project p to p' by Newton iteration;
if ||p − p'|| > \tau go to 1 with p := p'
endfor

RECONSTRUCTION:
Let P' be the projected point set;
reconstruct with P'.
Normal Estimation

• Delaunay based, i.e. calculate DT of input points.

• Big Delaunay ball: radius greater than certain times the nearest neighbor.

• The vectors of incident points to center of $B(c,r)$ approximate normals.
Normal Estimation
Feature Detection

• In noiseless case:
 → Take poles in Voronoi cells, shortest distance approximates $lfs(p)$.

• This does not work in the case of noise.
• Every medial axis point is covered with a big Delaunay Ball (observation by Dey and Goswami)
 • Take biggest Delaunay Ball in both (normal) directions of sample point p.
 → Centers act as poles (L).
• $lfs(proj(x))$ is $d(p, L)$ where p is closest point to x in P.
Projection

• Newton Iteration: move \(p \) to \(p' \), i.e.:

\[
p' = p - \frac{\mathcal{I}(p)}{\| \nabla \mathcal{I}(p) \|^2} \nabla \mathcal{I}(p)
\]

• Iterate until \(d(p, p') \) becomes smaller than a certain treshold.

• To calculate \(\mathcal{I}(p) \) and \(\nabla \mathcal{I}(p) \) only use the points in Ball with radius 5x the width of the Gaussian weighting function.

\[\rightarrow\] Points outside have little effect on the function.

• Newton projection has big convergent domain.
Reconstruction

• Finally, use a reconstruction algorithm, e.g. Cocone to calculate a mesh.
AMLS vs PMLS

• Background on “Projection MLS”:
 – Surface is the set of stationary points of a function \(f \).
 – An energy function \(e \) measures the quality of the fit of a plane to the point set at \(r \).
 – The local minima of \(e \) nearest to \(r \) is \(f(r) \).
AMLS vs PMLS

• The zero set of the energy function defines the surface.

• But there are other two layers of zero-level sets where the energy function reaches its local maximum.

\[\varepsilon(y, n(x)) = \frac{1}{2} \sum_{p \in P} [(y - p)^T n(x)]^2 \theta_p(y) \]

\[J(x) = n(x)^T \left(\frac{\partial \varepsilon(y, n(x))}{\partial y} \right|_x \)
AMLS vs PMLS

• When distance between the layers gets small, computations on the PMLS surface become difficult.
 → Small “marching step” in ray tracing
 → Small size of cubes in polygonizer
AMLs vs PMLS

- Furthermore, projection procedure in PMLS is not trivial.
 → non-linear optimization.
 → ...and finding a starting value is difficult if the two maximum layers are close.

- If there is noise, maxima layers could interfere.
 → Holes and disconnectness.
AMLS vs PMLS

| Model | \(|P| \) | Method | \#nb | \#iter | Time |
|-------------|--------|--------|------|--------|------|
| Max-planck | 49137 | NP | 1000 | 3.1 | 94 |
| | | PP | 1108 | 7.2 | 310 |
| Bighand | 38214 | NP | 1392 | 3.2 | 109 |
| | | PP | 1527 | 8.6 | 400 |
A Sampling Theorem for MLS Surfaces

Peer-Timo Bremer and John C. Hart
Motivation

• We saw a lot of work about PSS.

• But not much knowledge about resulting mathematical properties.

• It is assumed that surface construction is well defined within a neighborhood.
Motivation

• MLS filters samples, and projects them onto a local tangent plane.

• MLS is robust but difficult to analyze.

• Current algorithms may actually miss the surface.
 → MLS is defined as the stationary points of a (dynamic) projection.
 → This projection is “dynamic” and can be undefined.
 → Robustness of MLS is determined by projection.

→ Need a sample condition which guarantees that projection is defined everywhere.
Motivation

• What is necessary to have a faithful projection?
 → Correct normals.

• We need a condition which shows that given a surface and a sampling, normals are well defined.
Sampling Condition - Outline

• Given a sample, show

 Normal vector needed by MLS does not vanish

 Given conditions of the surface and sampling, the normal is well defined
PCA - Review

- We have given a set of points in \mathbb{R}^3 which lie or don’t lie on a surface.
- We know the 3x3 covariance matrix at point q is

$$
cov_\theta(q) = \sum_i \theta(||q - p_i||)(q - p_i)(q - p_i)^T
$$

- The $cov(q)$ can be factored into U^TLU

- ...where

$$
L = \begin{pmatrix}
\lambda_{\text{max}} & 0 & 0 \\
0 & \lambda_{\text{mid}} & 0 \\
0 & 0 & \lambda_{\text{min}}
\end{pmatrix}
$$

$$
U = \begin{pmatrix}
v_{\text{max}} & v_{\text{mid}} & v_{\text{min}}
\end{pmatrix}
$$
PCA - Review

- v_{max}, v_{mid}, v_{min} define local coordinate frame:
MLS Surface

- *weight function* $\theta : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ e.g. Gaussian

- Weighted average
 \[
 a(q) = \frac{\sum_i \theta(||q - p_i||)p_i}{\sum_i \theta(||q - p_i||)}
 \]

- 3x3 covariance matrix
 \[
 \text{cov}_\theta(q) = \sum_i \theta(||q - p_i||)(q - p_i)(q - p_i)^T
 \]
MLS surface

- From $\text{cov}_\theta(q)$ we know:
 The eigenvector of the unique smallest eigenvalue defines the normal $n(q)$.

- Using that, the zero set of

 $$f(q) = n(q)^T (q - a(q))$$

defines the MLS surface.

 $\Rightarrow n(q)$ has to be well defined!
New Sampling Condition

• Previous Sampling condition:
 “S is well sampled by \(P \) if normal directions are defined inside a neighborhood of \(\hat{S} \).” (Adamson and Alexa)

• This is not good because \(S \neq \hat{S} \).
 \(\rightarrow \) S could be “well sampled” but undefined normal direction can result

• New Sampling condition:
 “S is well sampled by \(P \) if normal directions are defined inside a neighborhood of S.
Uniqueness of smallest Eigenvalue

• You can prove a sampling to be well defined by ensuring that \(\text{cov}_\theta(q) \) has a unique smallest eigenvalue over a neighborhood of \(S \).

• It is proved in terms of the weighted variance of the samples \(P \).

• Directional Variance:

\[
\text{var}_n(q) = \sum_{i=1}^{N} \theta(||q - p_i||) (n^T (q - p_i))^2
\]

→ Variance in a specific direction
Uniqueness of smallest Eigenvalue

• We combine that with $\text{cov}_\theta(q)$ and get

$$\text{var}_n(q) = n^T \text{cov}_\theta(q)n$$

• …and decompose it into eigenvalues and eigenvectors:

$$\text{var}_n(q) = a^2 \lambda_1 + b^2 \lambda_2 + c^2 \lambda_3$$

where $a = n^T v_1$, $b = n^T v_2$ and $c = n^T v_3$
Uniqueness of smallest Eigenvalue

• Using that it can be shown that if λ_{min} is not unique $\rightarrow \text{var}_n(q)$ isn’t unique either. (Lemma 2)

• This leads to:
Theorem 1 If the directional weighted variance $\text{var}_v(q)$ for some unit vector v, is strictly less than the directional weighted variance of any perpendicular unit vector w, then the smallest eigenvalue of $\text{cov}_\theta(q)$ is unique.
Sampling Theorem

• To prove the sampling condition, show that for every point q, there is a normal direction whose weighted variance is less than that of any perpendicular direction.
 → Derive *upper* bound of weighted variance in normal direction n.

→ Derive *lower* bound in an arbitrary tangent direction x.

→ Determine sampling conditions:
 $\max(var_n(q)) < \min(var_x(q))$
Sampling Theorem

• To show $\text{var}_n(q) < \text{var}_x(q)$, partition datapoints into ones that increase var_n more versus ones that increase var_x more.

• Construct two planes through q

$$P_{\pm} = \{ p \in \mathbb{R}^3 \mid n^T (p - q) = \pm x^T (p - q) \}$$

...which separates the points such that
Sampling Theorem

- Points below those planes increase $\text{var}_n(q)$ more than $\text{var}_x(q)$.
- The region below the planes define an *hourglass* shape.
Sampling Theorem

• Furthermore, q is at most $w = \tau lfs(proj(q))$ above surface.
Sampling Theorem

• Project hourglass onto lower medial ball (B-).
• Find limit of max possible effect of these “risky” samples.
• Use the risky area (red) to overestimate the number of samples and their contribution to \(var_n \).
Sampling Theorem

• Define upper bound on samples in risky area and use it to compute upper bound of var_n.

• Define lower bound on samples outside risky area to compute lower bound of var_x.

• This leads to the Main Theorem:

Theorem 2 Let S be a surface of bounded positive local feature size $\rho_{\text{max}}/\rho_{\text{min}} \leq \alpha$, sampled by an (ε, δ)-sampling of points $p \in P$ no farther than $\tau \rho(w)$ from S, where w is the closest point on S to p. Then for $\alpha \leq 1000, \varepsilon \leq 1/200, \delta \geq 1/2000$, and $\tau \leq 1/250$, the MLS surface constructed with an adaptive Gaussian kernel of standard deviation $\sigma = \rho(w)/25$ on the samples P is well defined in that its normals never vanish over the τ neighborhood of S.