EMERGING MEMORY SYSTEMS

Mahdi Nazm Bojnordi
Assistant Professor
School of Computing
University of Utah
Overview

- **Upcoming deadline**
 - April 7\(^{th}\): sign up for student paper presentation
 - April 14\(^{th}\): student presentations start

- **This lecture**
 - DRAM technology scaling issues
 - Charge vs. phase based memory
 - Phase change memory
DRAM Cell Structure

- One-transistor, one-capacitor
 - Realizing the capacitor is challenging

- 1T-1C DRAM
- Charge based sensing
- Volatile
Memory Scaling in Jeopardy

Scaling of semiconductor memories greatly challenged beyond 20nm

The World's Tallest Buildings

A skyscraper being built in Jeddah aims for a record-breaking height that's expected to exceed 3,281 feet.

<table>
<thead>
<tr>
<th>Building</th>
<th>Height (feet)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeddah Tower (under construction)</td>
<td>> 3,281</td>
<td>2018</td>
</tr>
<tr>
<td>Burj Khalifa (world's tallest building), Dubai</td>
<td>2,717</td>
<td>2010</td>
</tr>
<tr>
<td>Shanghai Tower, Shanghai</td>
<td>2,073</td>
<td>2015</td>
</tr>
<tr>
<td>Makkah Royal Clock Tower, Mecca</td>
<td>1,972</td>
<td>2012</td>
</tr>
<tr>
<td>One World Trade Center, New York</td>
<td>1,776</td>
<td>2014</td>
</tr>
<tr>
<td>Taipei 101, Taipei</td>
<td>1,667</td>
<td>2004</td>
</tr>
<tr>
<td>Chrysler Building (61st tallest), New York</td>
<td>1,046</td>
<td>1930</td>
</tr>
</tbody>
</table>

Note: Includes antennas Source: The Council on Tall Buildings and Urban Habitat
Addressing DRAM Issues

- Overcome DRAM shortcomings with
 - System-DRAM co-design
 - Novel DRAM architectures, interface, functions
 - Better waste management (efficient utilization)

- Key issues to tackle
 - Reduce refresh energy
 - Improve bandwidth and latency
 - Reduce waste
 - Enable reliability at low cost
Alternative to DRAM

- **Key concept:** replace DRAM cell capacitor with a programmable resistor

- **1T-1C DRAM**
- Charge based sensing
- Volatile

- **1T-1R STT-MRAM, PCM, RRAM**
- Resistance based sensing
- Non-volatile
Charge vs. Phase

- **Charge Memory** (e.g., DRAM, Flash)
 - Write data by capturing charge Q
 - Read data by detecting voltage V

- **Resistive Memory** (e.g., PCM, STT-MRAM, memristors)
 - Write data by pulsing current dQ/dt
 - Read data by detecting resistance R
Limits of Charge Based Memory

- Difficult charge placement and control
 - Flash: floating gate charge
 - DRAM: capacitor charge, transistor leakage
- Reliable sensing becomes difficult as charge storage unit size reduces

[slide ref: Mutlu]
Leading Contenders

STT-MRAM
- Limited to single-level cell
- 3D un-stackable
+ High endurance ($\sim 10^{15}$)
+ ~ 4ns switching time
+ $\sim 50uW$ switching power

[Halupka, et al. ISSCC’10]

PCM-RAM
+ Multi-level cell capable
+ $4F^2$ 3D-stackable cell
- Endurance: $\sim 10^9$ writes
- ~ 100ns switching time
- $\sim 300uW$ switching power

[Pronin. EETime’13]

R-RAM
+ Multi-level cell capable
+ $4F^2$ 3D-stackable cell
- Endurance: 10^6-10^{12} writes
+ ~ 5ns switching time
+ $\sim 50uW$ switching power

[Henderson. InfoTracks’11]

[ITRS’13]
Positioning of New Memories

- **Higher Speed**
- **Lower Cost**
- **Higher Endurance**

- SRAM
- DRAM
- FLASH
- HDD

- RRAM
- PCM
- STT
Phase Change Memory

- Phase change material (chalcogenide glass) exists in two states:
 - **Amorphous**: Low optical reflectivity, high electrical resistivity
 - **Crystalline**: High optical reflectivity, low electrical resistivity
Phase Change Memory

- Write: change phase via current injection
 - SET: sustained current to heat cell above T_{cryst}
 - RESET: cell heated above T_{melt} and quenched

- Read: detect phase via material resistance
 - amorphous/crystalline

[slide ref: Mutlu]
Some emerging resistive memory technologies seem more scalable than DRAM (and they are non-volatile)
- Example: Phase Change Memory
 - Expected to scale to 9nm (2022 [ITRS])
 - Expected to be denser than DRAM: can store multiple bits/cell

But, emerging technologies have shortcomings as well
- Can they be enabled to replace/augment/surpass DRAM?
Hybrid Memory Systems

Hardware/software manage data allocation and movement to achieve the best of multiple technologies
PCM Latency

- Latency comparable to, but slower than DRAM
 - Read Latency: 50ns (4x DRAM, 10-3x NAND Flash)
 - Write Latency: 150ns (12x DRAM)
 - Write Bandwidth: 5-10 MB/s (0.1x DRAM, 1x NAND Flash)

[slide ref: Mutlu]