
NEAR DATA PROCESSING

CS/ECE 7810: Advanced Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Requirement for Your Presentations

¨ Prepare for exactly 20m talk followed by 5m Q&A
¨ Required components in your presentation

¤ Summary of the work
n Clearly present key ideas, mechanisms, and results

¤ Strength and weaknesses
n Slides highlighting the strengths and weaknesses

¤ Discussion
n Future research directions
n Alternative ways to solving the problem

Data Processing Trends

¨ Why processing in memory …

Near Data
Processing

Emerging Applications

Graph analytics,
deep neural
nets, etc.

Scaling Limitations

End of Denard
scaling

New Technologies

3D stacking,
resistive
memories, etc. [ref: GraphLab, ZME]

Requirements for Efficient NDP

Near Data
Processing

¨ Throughput
¤ High processing

throughput to match
the high memory
bandwidth

¨ Power
¤ Thermal constraints

limit clock
frequency

¨ Flexibility
¤ Must amortize manufacturing

cost through reuse across apps

Memory Technologies

¨ HMC: hybrid memory cube

[ref: micron]

High-Bandwidth Memory Buses

¨ Current DDR4 maxes out at 25.6 GB/sec

¨ High Bandwidth Memory (HBM) led by AMD and NVIDIA
¤ Supports 1,024 bit-wide bus at125 GB/sec

¨ Hybrid Memory Cube (HMC) consortium led by Intel
¤ Claimed that 400 GB/sec possible

¨ Both based on stacked memory chips
¤ Limited capacity (won’t replace DRAM), but much higher than on-

chip caches

High Bandwidth Memory

High Bandwidth Memory

Resistive Memory Technology

¨ 3D crosspoint promises virtually unlimited memory
¤ Non-volatile
¤ 10x higher density
¤ Main limit for now 6GB/sec interface

Li
ne

 D
riv

er

SA SA SASA

D
ec

od
er

Near Data Processing

¨ How to map applications to NDP technology?

Near Data
Processing

Emerging Applications

Graph analytics,
deep neural
nets, etc.

Scaling Limitations

End of Denard
scaling

New Technologies

3D stacking,
resistive
memories, etc. [ref: GraphLab, ZME]

Near Data Processing

¨ Example
¤ Stacks run memory intensive code
¤ Multiple stacks linked to host processor (SerDes)

HMC

Design Challenges

¨ Communication within and across stacks
¤ Fine-grained vs. coarse-grained blocks

[PACT’15]

Efficient NDP Architecture

¨ Flexibility, area and power efficiency
¨ HRL: heterogeneous reconfigurable logic

[HPCA’16]

Configurable Logic
Block
• LUTs for embedded

control logic
• Special functions:

sigmoid, tanh, etc.

Output MUX Block
• Configurable MUXes

(tree, cascading,
parallel)

• Put close to output,
low cost and flexible

Functional Unit
• Efficient 48-bit

arithmetic/logic ops
• Registers for pipelining

and retiming

Power Efficiency

¨ 2.2x performance/Watt over FPGA
¨ Within 92% of ASIC performance

[HPCA’16]

Combinatorial Optimization

¨ Numerous critical problems in science and engineering can be
cast within the combinatorial optimization framework.

Massively Parallel
Boltzmann Machine

Approximate
Heuristic Algorithms

Genetic Algorithms

Ant Colony Optimization

Semi-Definite Programming

Simulated Annealing

Tabu Search

Communication
Networks

10010
01 1
1001Data

Mining
DNA
Analysis

Artificial
Intelligence

Pharmaceuticals

Combinatorial
Optimization Problems

Traveling Salesman

Knapsack

Scheduling

Machine Learning

Bin Packing

The Boltzmann Machine

¨ Two-state units connected with real-valued edge weights form
a stochastic neural network.

¨ Goal: iteratively update the state or weight variables to
minimize the network energy (E).

xj

The Boltzmann Machine

Σ

x0

x3
w3,j

w0,j
1

1 + eδ/C
Control

Parameter

δ = (2xj-1) Σxiwi,j

E = -½ ΣΣxixjwi,j

Computational Model

¨ Network energy is minimized by adjusting either the edge
weights or recomputing the states.

¨ Iterative matrix-vector multiplication between weights and
states is critical to finding minimal network energy.

Data
Movement

Functional Units

………

Memory Arraysw0,0 w0,1…
w1,0… …

x0
x1…

Σ, ×, 1
1 + ex

The Boltzmann Machine

Resistive Random Access Memory

¨ An RRAM cell comprises an access transistor and a resistive
switching medium.

RRAM Cell

Wordline Bitline

The Boltzmann Machine Functional Units

………

RRAM Arrays

V

RRAM: Resistive RAM
(source: HP, 2009)

¨ A read is performed by activating a wordline and measuring
the bitline current (I).

Resistive Random Access Memory

I = V/R1
V

‘1’

R1

The Boltzmann Machine Functional Units

………

RRAM Arrays

Memristive Boltzmann Machine

¨ Key Idea: exploit current summation on the RRAM bitlines to
compute dot product.

‘1’

‘1’

‘1’

‘1’

I =ΣV/Ri
V

The Boltzmann Machine Functional Units

………

RRAM Arrays

Memristive Boltzmann Machine

¨ Memory cells represent the weights and state variables are
used to control the bitline and wordlines.

I =ΣV/Ri

w01

w02
w03

w04

I =ΣW0i
V

X1

X2

X3

X4

X0

I =ΣX0XiW0i

The Boltzmann Machine Functional Units

………

RRAM Arrays

Chip Organization

¨ Hierarchical organization with configurable reduction tree is
used to compute large sum of product.

Mat Subbank H-Tree

Bank

Reduction
Tree

Controller

Chip

System Integration

Software configures the
on-chip data layout and
initiates the optimization
by writing to a memory
mapped control register.

To maintain ordering,
accesses to the
accelerator are made
uncacheable by the
processor.

DDR3 reads and writes are used for configuration
and data transfer.

Accelerator
DIMM

1. Configure the DIMM
2. Write weights and states
3. Compute
4. Read the outcome

Controller

CPU

D R A M

System Integration

Software configures the
on-chip data layout and
initiates the optimization
by writing to a memory
mapped control register.

To maintain ordering,
accesses to the
accelerator are made
uncacheable by the
processor.

DDR3 reads and writes are used for configuration
and data transfer.

Accelerator
DIMM

1. Configure the DIMM
2. Write weights and states
3. Compute
4. Read the outcome

Controller

CPU

D R A M

Controller

System Integration

Software configures the
on-chip data layout and
initiates the optimization
by writing to a memory
mapped control register.

To maintain ordering,
accesses to the
accelerator are made
uncacheable by the
processor.

DDR3 reads and writes are used for configuration
and data transfer.

Accelerator
DIMM

Model (m×n)

n

m

1. Configure the DIMM
2. Write weights and states
3. Compute
4. Read the outcome

CPU

D R A M

System Integration

Software configures the
on-chip data layout and
initiates the optimization
by writing to a memory
mapped control register.

To maintain ordering,
accesses to the
accelerator are made
uncacheable by the
processor.

DDR3 reads and writes are used for configuration
and data transfer.

Accelerator
DIMM

1. Configure the DIMM
2. Write weights and states
3. Compute
4. Read the outcome

Controller

Start
Ready

CPU

D R A M

System Integration

Software configures the
on-chip data layout and
initiates the optimization
by writing to a memory
mapped control register.

To maintain ordering,
accesses to the
accelerator are made
uncacheable by the
processor.

DDR3 reads and writes are used for configuration
and data transfer.

Accelerator
DIMM

1. Configure the DIMM
2. Write weights and states
3. Compute
4. Read the outcome

Controller

Start
Ready

CPU

D R A M

Summary of Results

0.01

0.1

1

0.01 0.1 1

Ex
ec

ut
io

n
Ti

m
e

N
or

m
al

iz
ed

 to

th
e

Si
ng

le
 T

hr
ea

de
d

K
er

ne
l

System Energy Normalized to the Single
Threaded Baseline

60x

34x

9x
6x

Multi-threaded Kernel

PIM Accelerator

Memristive Accelerator

