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Requirement for Your Presentations

¨ Prepare for exactly 20m talk followed by 5m Q&A
¨ Required components in your presentation

¤ Summary of the work
n Clearly present key ideas, mechanisms, and results

¤ Strength and weaknesses
n Slides highlighting the strengths and weaknesses

¤ Discussion
n Future research directions
n Alternative ways to solving the problem



Data Processing Trends

¨ Why processing in memory …

Near Data 
Processing

Emerging Applications

Graph analytics, 
deep neural 
nets, etc.

Scaling Limitations

End of Denard
scaling

New Technologies

3D stacking, 
resistive 
memories, etc. [ref: GraphLab, ZME]



Requirements for Efficient NDP

Near Data 
Processing

¨ Throughput
¤ High processing 

throughput to match 
the high memory 
bandwidth

¨ Power
¤ Thermal constraints 

limit clock 
frequency

¨ Flexibility
¤ Must amortize manufacturing 

cost through reuse across apps



Memory Technologies

¨ HMC: hybrid memory cube

[ref: micron]



High-Bandwidth Memory Buses

¨ Current DDR4 maxes out at 25.6 GB/sec

¨ High Bandwidth Memory (HBM) led by AMD and NVIDIA
¤ Supports 1,024 bit-wide bus at125 GB/sec

¨ Hybrid Memory Cube (HMC) consortium led by Intel
¤ Claimed that 400 GB/sec possible

¨ Both based on stacked memory chips
¤ Limited capacity (won’t replace DRAM), but much higher than on-

chip caches



High Bandwidth Memory



High Bandwidth Memory



Resistive Memory Technology

¨ 3D crosspoint promises virtually unlimited memory
¤ Non-volatile
¤ 10x higher density
¤ Main limit for now 6GB/sec interface
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Near Data Processing

¨ How to map applications to NDP technology?

Near Data 
Processing

Emerging Applications

Graph analytics, 
deep neural 
nets, etc.

Scaling Limitations

End of Denard
scaling

New Technologies

3D stacking, 
resistive 
memories, etc. [ref: GraphLab, ZME]



Near Data Processing

¨ Example
¤ Stacks run memory intensive code
¤ Multiple stacks linked to host processor (SerDes)

HMC



Design Challenges

¨ Communication within and across stacks
¤ Fine-grained vs. coarse-grained blocks

[PACT’15]



Efficient NDP Architecture

¨ Flexibility, area and power efficiency
¨ HRL: heterogeneous reconfigurable logic

[HPCA’16]

Configurable Logic 
Block
• LUTs for embedded 

control logic
• Special functions: 

sigmoid, tanh, etc.

Output MUX Block
• Configurable MUXes

(tree, cascading, 
parallel)

• Put close to output, 
low cost and flexible

Functional Unit
• Efficient 48-bit 

arithmetic/logic ops
• Registers for pipelining 

and retiming



Power Efficiency

¨ 2.2x performance/Watt over FPGA
¨ Within 92% of ASIC performance

[HPCA’16]



Combinatorial Optimization

¨ Numerous critical problems in science and engineering can be 
cast within the combinatorial optimization framework.

Massively Parallel 
Boltzmann Machine
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Combinatorial
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Scheduling

Machine Learning

Bin Packing



The Boltzmann Machine

¨ Two-state units connected with real-valued edge weights form 
a stochastic neural network.

¨ Goal: iteratively update the state or weight variables to 
minimize the network energy (E).
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Computational Model

¨ Network energy is minimized by adjusting either the edge 
weights or recomputing the states.

¨ Iterative matrix-vector multiplication between weights and 
states is critical to finding minimal network energy.
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Resistive Random Access Memory

¨ An RRAM cell comprises an access transistor and a resistive 
switching medium.

RRAM Cell

Wordline Bitline

The Boltzmann Machine Functional Units

………

RRAM Arrays

V

RRAM: Resistive RAM
(source: HP, 2009)



¨ A read is performed by activating a wordline and measuring 
the bitline current (I).

Resistive Random Access Memory

I = V/R1
V
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Memristive Boltzmann Machine

¨ Key Idea: exploit current summation on the RRAM bitlines to 
compute dot product.
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Memristive Boltzmann Machine

¨ Memory cells represent the weights and state variables are 
used to control the bitline and wordlines.
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Chip Organization

¨ Hierarchical organization with configurable reduction tree is 
used to compute large sum of product.

Mat Subbank H-Tree

Bank

Reduction
Tree

Controller

Chip



System Integration

Software configures the 
on-chip data layout and 
initiates the optimization 
by writing to a memory 
mapped control register.

To maintain ordering, 
accesses to the 
accelerator are made 
uncacheable by the 
processor.

DDR3 reads and writes are used for configuration
and data transfer.

Accelerator
DIMM

1. Configure the DIMM
2. Write weights and states
3. Compute
4. Read the outcome

Controller

CPU
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Controller

System Integration

Software configures the 
on-chip data layout and 
initiates the optimization 
by writing to a memory 
mapped control register.
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Summary of Results
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System Energy Normalized to the Single 
Threaded Baseline

60x

34x

9x
6x

Multi-threaded Kernel

PIM Accelerator

Memristive Accelerator


