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Requirement for Your Presentations

-
Prepare for exactly 20m talk followed by 5m Q&A

Required components in your presentation

O Summary of the work
Clearly present key ideas, mechanisms, and results

O Strength and weaknesses

Slides highlighting the strengths and weaknesses

O Discussion
Future research directions

Alternative ways to solving the problem



Data Processing Trends

Why processing in memory ...

Scaling Limitations Emerging Applications
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Requirements for Efficient NDP
-

Throughput Power
O High processing O Thermal constraints
throughput to match limit clock

the high memory

frequenc
bandwidth Near Data g Y

Processing

Flexibility
O Must amortize manufacturing
cost through reuse across apps



Memory Technologies

HMC: hybrid memory cube
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High-Bandwidth Memory Buses

0000
Current DDR4 maxes out at 25.6 GB/sec

High Bandwidth Memory (HBM) led by AMD and NVIDIA
O Supports 1,024 bit-wide bus at125 GB/sec

Hybrid Memory Cube (HMC) consortium led by Intel
O Claimed that 400 GB/sec possible

Both based on stacked memory chips

O Limited capacity (won’t replace DRAM), but much higher than on-
chip caches



High Bandwidth Memory

THE INTERPOSER AMD¢
THE NEXT STEP IN INTEGRATION

A Brings DRAM as close as possible to the logic die Stacked Memory

A

Improving proximity enables extremely wide bus
widths Logic Die
A Improving proximity simplifies communication and

CPU/GPU

clocking
A Improving proximity greatly improves bandwidth

per watt Package
4 Allows for integration of disparate technologies Substrate

such as DRAM '

A AMD developed industry partnerships
with ASE, Amkor & UMC to develop
the first high-volume manufacturable
interposer solution




High Bandwidth Memory

HIGH-BANDWIDTH MEMORY AMDZ1
DRAM BUILT FOR AN INTERPOSER

A A new type of memory chip with low
power consumption and an ultra-
wide bus width

A4 Many of those chips stacked vertically like

flors nasyscraper e L
[ N N N ]

4 New interconnects, called “through-silicon |I|I|I|_
vias” (TSVs) and “ubumps”, connect one sese

Cowoge [

DRAM chip to the next
[ N N ]

A TSVs and pbumps also used to connect |I |I|

the SoC/GPU to the interposer

Logic Dle PHY GPU/CPU/Soc Die
A AMD and SK Hynix partnered to define o 1 L
and develop the first complete ll“-.'--_dl“'
specification and prototype for HBM
Package Suhstrate



Resistive Memory Technology
S —

3D crosspoint promises virtually unlimited memory

O Non-volatile
O 10x higher density

O Main limit for now 6GB /sec interface
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Near Data Processing

How to map applications to NDP technology?

Emerging Applications

1995 2000 2005 2010 2015
1000 500 250 130 20 65 45 32 22 Source: GraphLab Inc. ee® .

Technolo gy Node [nm]

Graph analytics,
deep neural
nets, etc.

3D stacking,
resistive
memories, etc.

[ref: GraphLab, ZME]



Near Data Processing

Example
O Stacks run memory intensive code

O Multiple stacks linked to host processor (SerDes)
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Design Challenges

Communication within and across stacks

O Fine-grained vs. coarse-grained blocks

Vault Vault Vault Vault
0 1 2 3
Task Task

Process PEs

Buffer separately
and locally

Pull remotely Task

[PACT’15]



Efficient NDP Architecture
e

Flexibility, area and power efficiency

HRL: heterogeneous reconfigurable logic

Control Input Data Input

Configurable Logic I
Block .
« LUTs forembedded [l .| . N o y | conto
control logic e
« Special functions: |
Singid, tanh, etc. cB H FU FU FU FU FU 1:::
racks
Output MUX Block ClB M FU FU FU FU FU Functional Unit
- Configurable MUXes *  Efficient 48-bit
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« Put close to output, : ' : . : and retiming
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Power Efficiency

2.2x performance /Watt over FPGA
Within 92% of ASIC performance
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HRL 2.2x FPGA, 1.7x CGRA on perf/Watt
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Combinatorial Optimization

Numerous critical problems in science and engineering can be

cast within the combinatorial optimization framework.

e

Pharmaceuticals

Combinatorial

Optimization Problems Communication

. Networks
Traveling Salesman

Artificial Bin Packing

Intelligence
Machine Learning 10010
01!

Data 1901
Mining

DNA
Analysis

\

Approximate
Heuristic Algorithms

Genetic Algorithms

Ant Colony Optimization

Semi-Definite Programming

Tabu Search

Simulated Annealing

Massively Parallel
Boltzmann Machine




The Boltzmann Machine

Two-state units connected with real-valued edge weights form
a stochastic neural network.

Goal: iteratively update the state or weight variables to
minimize the network energy (E).
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Computational Model

Network energy is minimized by adjusting either the edge
weights or recomputing the states.

lterative matrix-vector multiplication between weights and
states is critical to finding minimal network energy.
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Resistive Random Access Memory

An RRAM cell comprises an access transistor and a resistive

switching medium.

(source: HP, 2009)

RRAM Cell

Wordline

Bitline
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Resistive Random Access Memory

A read is performed by activating a wordline and measuring
the bitline current (l).
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Memristive Boltzmann Machine

Key Idea: exploit current summation on the RRAM bitlines to
compute dot product.
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Memristive Boltzmann Machine

Memory cells represent the weights and state variables are
used to control the bitline and wordlines.
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Chip Organization
e

Hierarchical organization with configurable reduction tree is
used to compute large sum of product.
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System Integration

DDR3 reads and writes are used for configuration

Software configures the and data transfer.

on-chip data layout and
initiates the optimization
by writing to a memory

mapped control register.

To maintain ordering,

accesses to the @
accelerator are made

Controller

uncacheable by the
processor.
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System Integration

DDR3 reads and writes are used for configuration

Software configures the and data transfer.

on-chip data layout and _
initiates the optimization 1. Configure the DIMM
by writing to a memory

mapped control register.

To maintain ordering,
accesses to the @
accelerator are made

Controller

uncacheable by the
processor.
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System Integration

DDR3 reads and writes are used for configuration

Software configures the and data transfer.

on-chip data layout and _
initiates the optimization 1. Configure the DIMM

by writing to a memory 2. Write weights and states

mapped control register. Model (m X n)
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To maintain ordering, 1TrFirF
accesses to the
accelerator are made Controller
uncacheable by the
processor. CRU
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System Integration
S

DDR3 reads and writes are used for configuration

Software configures the and data transfer.

on-chip data layout and _
initiates the optimization 1. Configure the DIMM

by writing to a memory 2. Write weights and states
mapped control register. 3. Compute

To maintain ordering,

accesses to the
accelerator are made Controller
uncacheable by the
processor.
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System Integration

DDR3 reads and writes are used for configuration

Software configures the and data transfer.

on-chip data layout and

initiates the optimization 1. Configure the DIMM
by writing to a memory 2. Write weights and states
mapped control register. 3. Compute

4. Read the outcome

To maintain ordering,

accesses to the

accelerator are made Controller

uncacheable by the
processor.




Summary of Results
S —
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