# DRAM RELIABILITY

Mahdi Nazm Bojnordi

**Assistant Professor** 

School of Computing

University of Utah

UNIVERSITY

OF UTAH

THE

CS/ECE 7810: Advanced Computer Architecture

#### Overview

#### Upcoming deadline

March 4<sup>th</sup> (11:59PM): homework
 Late submission = NO submission
 March 25<sup>th</sup>: sign up for your student paper presentation

#### This lecture

- Memory errors
- Error detection vs. correction
- Memory scrubbing
- Disturbance errors

## Memory Errors

- Any unwanted data change (bit flip)
  - storage cell
  - sensing circuits
  - wires
- Soft errors are mainly caused by
  - Slight manufacturing defects
  - Gamma rays and alpha particles
  - Electrical interference
  - ••••

#### **Error Detection and Correction**

Main memory stores a huge number of bits
 Nontrivial bit flip probability
 Even worse as the technology scales down

Reliable systems must be protected against errors

Techniques

- Error detection
  - parity is a rudimentary method of checking the data to see if errors exist
- Error correction code (ECC)
  - additional bits used for error detection and correction

### **Error Correction Codes**

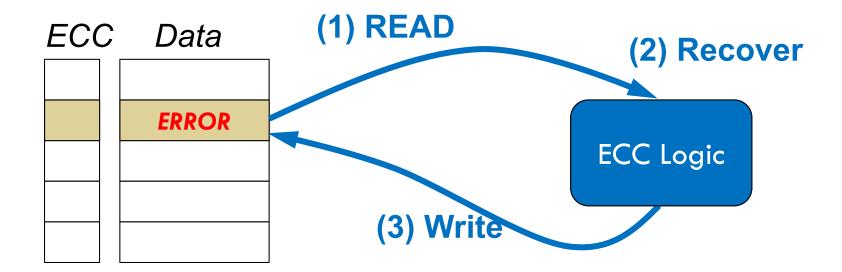
- Example: add redundant bits to the original data bits
  - SECDED: Hamming distance (0000, 1111) = 4

| Power                                                         | Correct   | #bits | Comments                                         |
|---------------------------------------------------------------|-----------|-------|--------------------------------------------------|
| Nothing                                                       | 0,1       | 1     |                                                  |
| Single error detection (SED)                                  | 00,11     | 2     | 01,10 =>errors                                   |
| Single error correction (SEC)                                 | 000,111   | 3     | 001,010,100 => 0<br>110,101,011 => 1             |
| Single error correction<br>double error detection<br>(SECDED) | 0000,1111 | 4     | One 1 => 0<br>Two 1's => error<br>Three 1's => 1 |

[adopted from Lipasti]

#### **Error Correction Codes**

Reduce the overhead by applying the codes to words instead of bits

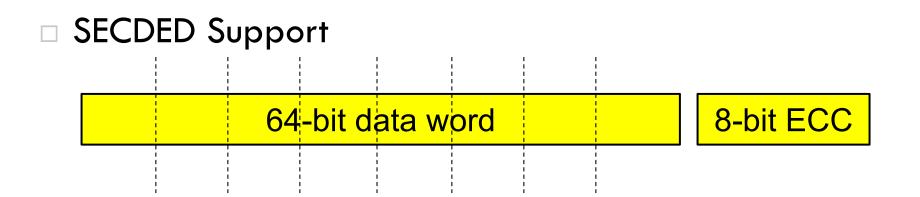

| # bits | SED overhead | SECDED overhead                   |
|--------|--------------|-----------------------------------|
| 1      | 1 (100%)     | 3 (300%)                          |
| 32     | 1 (3%)       | 7 (22%)                           |
| 64     | 1 (1.6%)     | 8 (13%)                           |
| n      | 1 (1/n)      | 1 + log <sub>2</sub> n + a little |
|        |              |                                   |

#### ECC DIMM (9 x8 chips)



### **Memory Error Correction**

ECC allows the memory controller to correct cell retention errors and relax memory cell retention requirements.




# Memory Scrubbing

ECC Bits Data Bits Uncorrectable **ECC Logic** 

- ECC can correct a fixed number of errors
- Data can become uncorrectable if ECC is used without scrubbing
- Scrubbing prevents errors
  from accumulating over time
  - Periodically read all of the memory locations
  - Check ECC, correct errors, and write corrected data back to memory

### **Stronger Error Corrections**



- One extra x8 chip per rank
- Storage and energy overhead of 12.5%
- Cannot handle complete failure in one chip

## **Stronger Error Corrections**

- SECDED Support
- Chipkill Support

64-bit data word

8-bit ECC

At most one bit from each DRAM chip

- Use 72 DRAM chips to read out 72 bits
- Dramatic increase in activation energy and overfetch
- Storage overhead is still 12.5%

## **Stronger Error Corrections**

- SECDED Support
- Chipkill Support

8-bit data word

5-bit ECC

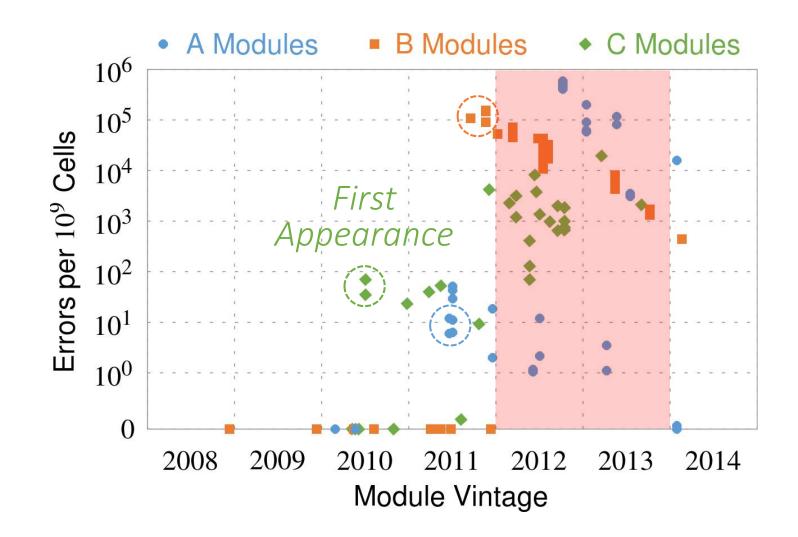
At most one bit from each DRAM chip

- Use 13 DRAM chips to read out 13 bits
- Storage and energy overhead: 62.5%
- Other options exist; trade-off between energy and storage

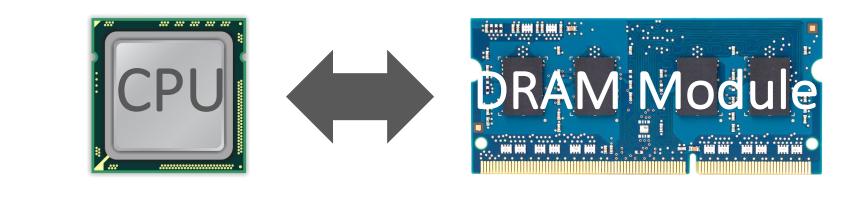
### **Row Hammer Problem**

#### Repeated row activations can cause bit flips in adjacent rows

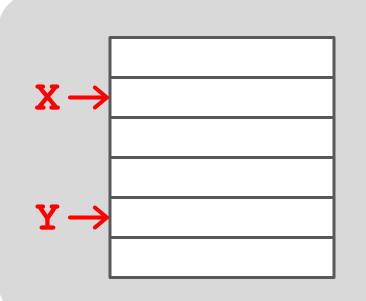
Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5


Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as **Rowhammer**, exists with some DDR3 RAM that could have led to memory corruption. This issue was mitigated by increasing memory refresh rates.


CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by Yoongu Kim et al (2014) [Apple]


### Modern DRAM is Vulnerable



#### How Program Induces RH Errors?



loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (X) mfence jmp loop



#### Sources of Disturbance Errors

- □ Cause 1: Electromagnetic coupling
  - Toggling the wordline voltage briefly increases the voltage of adjacent wordlines
  - Slightly opens adjacent rows → Charge leakage
- □ Cause 2: Conductive bridges
- □ Cause 3: Hot-carrier injection

#### Confirmed by at least one manufacturer

[slide source:Mutlu]

#### **Basic Solutions**

Throttle accesses to same row

□ Limit access-interval:  $\geq$ 500ns □ Limit number of accesses:  $\leq$ 128K (=64ms/500ns)

Refresh more frequently

**\square** Shorten refresh-interval by  $\sim 7x$ 

Both naive solutions introduce significant overhead in performance and power

[Kim'2014]

#### Probabilistic Adjacent Row Activation

Key Idea

■ After closing a row, we activate (i.e., refresh) one of its neighbors with a low probability: p = 0.005

#### Reliability Guarantee

- When p=0.005, errors in one year:  $9.4 \times 10^{-14}$
- By adjusting the value of p, we can vary the strength of protection against errors