
DIRECTORY COHERENCE

CS/ECE 7810: Advanced Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah



Overview

¨ Upcoming deadline
¤ Tonight: project proposal

¨ This lecture
¤ Snooping wrap-up
¤ Directory coherence
¤ Implementation challenges
¤ Token-based coherence protocol



Recall: Cache Coherence

¨ Definition of coherence
¤ Write propagation

n Write are visible to other processors

¤ Write serialization
n All write to the same location are seen in the same order by 

all processes

A

P1 P2



Implementation Challenges

¨ MSI implementation
¤ Stable States

[Vantrease’11]



Implementation Challenges

¨ MSI implementation
¤ Stable States
¤ Busy states

[Vantrease’11]



Implementation Challenges

¨ MSI implementation
¤ Stable States
¤ Busy states
¤ Races

Unexpected events from 
concurrent requests to 
same block

[Vantrease’11]



Cache Coherence Complexity

¨ A broadcast snooping bus (L2 MOETSI)

[Lepak’03]



Implementation Tradeoffs

n Reduce unnecessary invalidates and transfers of blocks 
n Optimize the protocol with more states and prediction 

mechanisms

n Adding more states and optimizations 
n Difficult to design and verify

n lead to more cases to take care of
n race conditions

n Gained benefit may be less than costs (diminishing returns)



Coherence Cache Miss

¨ Recall: cache miss classification
¤ Cold (compulsory): first access to block
¤ Capacity: due to limited capacity
¤ Conflict: many blocks are mapped to the same set

¨ New class: misses due to sharing
¤ True vs. false sharing

A B



Summary of Snooping Protocols

¨ Advantages
¤ Short miss latency
¤ Shared bus provides global point of serialization
¤ Simple implementation based on buses in uniprocessors

¨ Disadvantages
¤ Must broadcast messages to preserve the order
¤ The global point of serialization is not scalable

n It needs a virtual bus (or a totally-ordered interconnect)



Scalable Coherence Protocols

¨ Problem: shared interconnect is not scalable

¨ Solution: make explicit requests for blocks

¨ Directory-based coherence: every cache block has 
additional information
¤ To track of copies of cached blocks and their states
¤ To track ownership for each block
¤ To coordinate invalidation appropriately



Directory Information

¨ P+1 additional bits for every cache block
¤ One bit used to indicate the block is in each cache
¤ One exclusive bit to indicate the cache has the only copy 

(can update without notifying others)
¨ On a read, set the cache’s bit and arrange the supply 

of data 
¨ On a write, invalidate all caches that have the block 

and reset their bits

P=4 E Cache Block

How to organize directory information?



Directory Organization

¨ Example: central directory for P processors
¤ For each cache block in memory

n p presence bits, 1 dirty bit
¤ For each cache block in cache

n 1 valid bit, and 1 dirty (owner) bit

• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

1 valid, 1 dirty (exclusive)
per block



Directory Protocol

¨ Three states (similar to snoopy protocol)
¤ Shared: more than one processors have data, memory up-

to-date
¤ Uncached: no processor has it; not valid in any cache
¤ Exclusive: one processor has data; memory out-of-date

¨ Basic terminology
¤ Local node, where a request originates
¤ Home node, where the memory location of an address 

resides
¤ Remote node, has copy of a cache block, whether exclusive 

or shared



Read Request

¨ P0 reads a cache location

[Culler/Singh]

P0 Home

1. Read

2. DatEx (DatShr)

P1



ReadEx Request

¨ Avoid roundtrip to home by sending data directly 
from owner

[Culler/Singh]

P0 Home

1. RdEx

3b. DatEx

Owner

2. Invl

3a. Rev



Write Contention

¨ NACKing mechanism

[Culler/Singh]

P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

J L
3. RdEx4. Invl

5a. Rev

5b. DatEx

J

What are the challenges?



Design Challenges

¨ Fairness: which requester is preferred on a conflict?
¤ Consider distance and delivery order of interconnect

¨ Race condition: how to keep the proper sequence
¤ NACK requests to busy blocks (pending invalidate)

n Original requestor retries

¤ Queuing requests and granting in sequence



Summary of Directory Protocols

¨ Advantages
¨ Does not require broadcast to all caches

¨ Exactly as scalable as interconnect and directory storage
(much more scalable than bus)

¨ Disadvantages
¨ Adds indirection to miss latency (critical path)

¨ request à directory à memory

¨ Requires extra storage space to track directory states

¨ Protocols and race conditions are more complex



Avoid Indirection

¨ Can we get the best of both snooping and directory 
protocols?
¤ Direct cache-to-cache misses (broadcast is ok)
¤ What if unordered interconnect (e.g., mesh) was used?

P P P M

2

1

3
P P P M

1

2

Directory Protocol Hybrid Protocol



An Example Problem

1

•P0 issues a request to write (delayed to P2)

Request to write

P2

Read/Write

P1

No Copy

P0

No Copy

Delayed in interconnect

3

•P1 issues a request to read

Request to read

2
Ack



An Example Problem

P2

Read/Write

P1

No Copy

P0

No Copy 1
2

3

4

Read-only Read-only

•P2 responds with data to P1



An Example Problem

P2

Read/Write

P1

No Copy

P0

No Copy 1
2

3

4

5
Read-only Read-only

•P0’s delayed request arrives at P2



An Example Problem

P2

Read/Write

P1

No Copy

P0

Read/Write 1
2

3

4

5

6

7

Read-only Read-only
No Copy

•P2 responds to P0



An Example Problem

P2

Read/Write

P1

No Copy

P0

Read/Write 1
2

3

4

5
7

Read-only Read-only
No Copy

Problem: P0 and P1 are in inconsistent states
Locally “correct” operation, globally inconsistent



Token Coherence

[Martin’03]

P2

T=16 (R/W)

P1

T=0

P0

T=0

2

Delayed

1

•P0 issues a request to write (delayed to P2)

Request to write

3

•P1 issues a request to read

Delayed Request to read

Max Tokens



Token Coherence

P2

T=16 (R/W)

P1

T=0

P0

T=0 1
2

3

4

T=1(R) T=15(R)

•P2 responds with data to P1

T=1

[Martin’03]



Token Coherence

P2

T=16 (R/W)

P1

T=0

P0

T=0 1
2

3

4

5
T=1(R) T=15(R)

•P0’s delayed request arrives at P2
[Martin’03]



Token Coherence

P2

T=16 (R/W)

P1

T=0

P0

T=15(R) 1
2

3

4

5

6

7

T=1(R) T=15(R)
T=0

•P2 responds to P0

T=15

[Martin’03]



Token Coherence

P2

T=0

P1

T=1(R)

P0

T=15(R)

Now what? (P0 wants all tokens)
[Martin’03]



Token Coherence

P2

T=0

P1

T=1(R)

P0

T=15(R)

8

•P0 reissues request
•P1 responds with a token

T=1 9
Timeout!

[Martin’03]



Token Coherence

P2

T=0

P0

T=16 (R/W)

P1

T=0

•P0’s request completed

One final issue: What about starvation?

[Martin’03]


