
SNOOPING PROTOCOLS

CS/ECE 7810: Advanced Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ Upcoming deadline
¤ Feb. 10th: project proposal
¤ one-page proposal explaining your project subject,

objectives, tools and simulators to be used, and possible
methodologies for evaluation

Overview

¨ This lecture
¤ Coherence basics
¤ Update vs. Invalidate
¤ A simple protocol
¤ Illinois protocol
¤ MESI protocol
¤ MOESI optimization
¤ Implementation issues

Recall: Shared Memory Model

¨ Goal: parallel programs communicate through
shared memory system

¨ Example: a write from P1 is followed by a read
from P2 to the same memory location (A)

¨ Problem: what if Mem[A] was cached by P1 or P2?
¤ Writable vs. read-only data

P1
Mem[A] = 1

P2
…

Print Mem[A]

Cache Coherence Protocol

¨ Guarantee that all processors see a consistent value
for the same memory location

¨ Provide the followings
¤ Write propagation that sends updates to other caches
¤ Write serialization that provide a consistent global

order seen by all processors

¨ A global point of serialization is needed for
ordering store instructions

Bus Snooping

¨ Relies on a broadcast infrastructure among caches

¨ Every cache monitors (snoops) the traffic to keep the states of the cache
block up to date
¤ All communication can be seen by all

¨ More scalable solution: ‘directory based’ schemes

Core Core

Memory

…

LLC

L1 L1

[Goodman’83]

Write Propagation

¨ Invalidate signal
¤ Keep a single copy of the

data after a write

¨ Update message
¤ Update all of the replicas

[slide ref.: Lipasti]

Which one is better?

Invalidate vs. Update

¨ Invalidate signal
¤ Exclusive access rights for a single copy after every invalidation
¤ May lead to rapid invalidation and reacquire of cache blocks

(ping-ponging)

¨ Update message
¤ Can alleviate the cost of ping-ponging; useful for infrequent

updates
¤ Unnecessary cost paid for updating blocks that will not be read
¤ Consumes significant bus bandwidth and energy

¨ In general, invalidate based protocols are better

Implementation Tips

¨ Avoid sending any messages if no other copies of the
cache block is used by other processors

¨ Depending on the cache write policy, the memory
copy may be not up to date
¤ Write through vs. write back
¤ Write allocate vs. write no-allocate

¨ We need a protocol to handle all this

Simple Snooping Protocol

¨ Relies on write-through, write no-allocate cache
¨ Multiple readers are allowed

¤ Writes invalidate replicas
¨ Employs a simple state machine for each cache unit

P1 P2

Memory

Bus

A:0

CacheCache

Valid

Invalid

Store/BusWrLoad/--

Evict/--

Store/BusWr

BusWr/--Load/BusRd

Transaction by local actions
Transaction by bus traffic

MSI: A Three State Protocol

¨ Instead of a single valid bit, more bits to represent
¤ Modified (M): cache line is the only copy and is dirty
¤ Shared (S): cache line is one of possibly many copies
¤ Invalid (I): cache line is missing

¨ Read miss makes a Read request on bus, transitions to S

¨ Write miss makes a ReadEx request, transitions to M state

¨ When a processor snoops ReadEx from another writer, it must
invalidate its own copy (if any)

¨ Upgrading S to M needs no reading data from memory

MSI: State Machine

M

S I

BusRdX/--

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush
PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action

[Culler/Singh96]

MSI: Challenges

¨ Observation: on a read, the block immediately goes to
“Shared” state although it may be the only copy to be
cached and no other processor will cache it
¤ A processor reads a block and wants to write to the same block

¨ Problem: we need to broadcast “invalidate” even for single
copy cache blocks

¨ Solution: skip broadcasting “invalidate” signal
¤ If the cache knew it had the only cached copy in the system, it

could have written to the block without notifying any other cache
¤ Save energy and time

MESI: A Four State Protocol

¨ Idea: Add another state indicating that this is the
only cached copy and it is clean
¤ Exclusive state

¨ How: block is placed into the exclusive state if,
during BusRd, no other cache had it
¤ Wired-OR “shared” signal on bus can determine this

n snooping caches assert the signal if they also have a copy

¨ Result: silent transition E to M is possible on write

[Papamarcos’84]

MESI: State Machine

PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX
PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

M

E

S

I

[Culler/Singh96]

MESI: Challenges

¨ Shared state requires the data to be clean
¤ All caches that have the block have the up-to-date copy

and so does the memory

¨ Observation: Need to write the block to memory when
BusRd happens when the block is in Modified state

¨ Problem: Memory may be updated unnecessarily
¤ Other processor may want to write to the block again while

it is cached
¤ Memory accesses consume significant time and energy

MESI: Challenges

¨ Solution 1: do not transition from M to S on a BusRd
¤ Invalidate the copy and supply the modified block to

the requesting processor directly without updating
memory

¨ Solution 2: transition from M to S, but designate one
cache as the owner (O), who will write the block
back when it is evicted
¤ Now “Shared” means “Shared and potentially dirty”
¤ This is a version of the MOESI protocol

Ownership Optimization

¨ Observation: shared ownership prevents cache-to-
cache transfer, causes unnecessary memory read
¤ Add O (owner) state to protocol: MOSI/MOESI
¤ Last requestor becomes the owner
¤ Avoid writeback (to memory) of dirty data
¤ Also called shared-dirty state, since memory is stale

¨ Used in AMD Opteron

Implementation Challenges

¨ Multi-layer cache architecture
¨ Uncertain memory delay
¨ Non-atomic bus transactions

Req
Delay

Response

Atomic Transaction Bus

Split-transaction Bus

Implementation Challenges

¨ Deadlock
¤ All system activity ceases
¤ Cycle of resource dependences

¨ Livelock
¤ No processor makes forward progress
¤ Constant on-going transactions at hardware level
¤ E.g. simultaneous writes in invalidation-based protocol

¨ Starvation
¤ Some processors make no forward progress
¤ E.g. interleaved memory system with NACK on bank busy

Recall: Cache Coherence

¨ Definition of coherence
¤ Write propagation

n Write ate visible to other processors

¤ Write serialization
n All write to the same location are seen in the same order by

all processes

A

P1 P2

Implementation Challenges

¨ MSI implementation
¤ Stable States

[Vantrease’11]

Implementation Challenges

¨ MSI implementation
¤ Stable States
¤ Busy states

[Vantrease’11]

Implementation Challenges

¨ MSI implementation
¤ Stable States
¤ Busy states
¤ Races

Unexpected events from
concurrent requests to
same block

[Vantrease’11]

Cache Coherence Complexity

¨ A broadcast snooping bus (L2 MOETSI)

[Lepak’03]

Implementation Tradeoffs

n Reduce unnecessary invalidates and transfers of blocks
n Optimize the protocol with more states and prediction

mechanisms

n Adding more states and optimizations
n Difficult to design and verify

n lead to more cases to take care of
n race conditions

n Gained benefit may be less than costs (diminishing returns)

Coherence Cache Miss

¨ Recall: cache miss classification
¤ Cold (compulsory): first access to block
¤ Capacity: due to limited capacity
¤ Conflict: many blocks are mapped to the same set

¨ New class: misses due to sharing
¤ True vs. false sharing

A B

Summary of Snooping Protocols

¨ Advantages
¤ Short miss latency
¤ Shared bus provides global point of serialization
¤ Simple implementation based on buses in uniprocessors

¨ Disadvantages
¤ Must broadcast messages to preserve the order
¤ The global point of serialization is not scalable

n It needs a virtual bus (or a totally-ordered interconnect)

Scalable Coherence Protocols

¨ Problem: shared interconnect is not scalable

¨ Solution: make explicit requests for blocks

¨ Directory-based coherence: every cache block has
additional information
¤ To track of copies of cached blocks and their states
¤ To track ownership for each block
¤ To coordinate invalidation appropriately

