
ON-CHIP NETWORK INNOVATIONS

CS/ECE 7810: Advanced Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah



Overview

¨ Upcoming deadline
¤ Feb.3rd: project group formation
¤ No groups have sent me emails!

¨ This lecture
¤ Basics of the interconnection networks
¤ Network topologies
¤ Flow control
¤ Routing algorithm
¤ Emerging on-chip networks



On-chip Interconnection Networks

¨ An infrastructure connecting various components in 
current and future ICs
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Mesh is mostly employed due to its scalability.



Network Topology



Network Topologies

¨ Regular vs. irregular graphs
¤ Examples of regular networks are mesh and ring

¨ Distances in the network
¤ Routing distance: number of links/hops along a route
¤ Network diameter: maximum number of hops per route
¤ Average distance: average number of links/hops across 

all valid routes



Example Topologies

¨ Bus
¤ Simple structure; efficient for small number of nodes
¤ Not scalable; highly contended
¤ Used in many processors

Bus Point to Point



Example Topologies

¨ Crossbar
¤ Complex arbitration
¤ High throughput and fast
¤ Requires a lot of resources
¤ Used in Sun Niagara I/II

[UltraSPARC T1]
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Example Topologies

¨ Segmented crossbar
¤ Reduce switching capacitance (~15-30%)
¤ Need a few additional signals to control tri-states

[Wang’03]



Example Topologies

¨ Goal: optimize for the common case
¤ Straight-through traffic does not go thru tristate buffers

[Wang’03]

¨ Some combinations of 
turns are not allowed
¤ Why?

Read the paper for details.



Example Topologies

¨ Express channels to reduce number of hops
¤ like taking the freeway

[Wang’03]



Example Topologies

¨ Ring
¤ Cheap; long latency
¤ IBM Cell

¨ Mesh
¤ Path diversity, efficient
¤ Tilera 100-core

¨ Torus
¤ More path diversity
¤ Expensive and complex



Example Topologies

¨ Tree
¤ Simple and low cost
¤ Easy to layout
¤ Efficiently handles local traffic
¤ Towards root, links are heavily contended

Fat Tree



Example Topologies

¨ Omega network
¤ Single path from source 

to destination

¤ Does not support all 
possible permutations

¤ Proposed to replace 
costly crossbars as 
processor-memory 
interconnect

[Gottlieb’82]



Flow Control



Sending Data in Network

¨ Circuit switching
¤ Establish full path; then send data
¤ Everyone else using the same link has to wait
¤ Setup overheads

¨ Packet switching
¤ Route individual packets (via different paths)
¤ More flexible than CS
¤ May be slower than CS



Handling Contention

¨ Problem
¤ Two packets want to use the same link at the same time

¨ Possible solutions
¤ Drop one
¤ Misroute one (deflection)
¤ Buffer one



Circuit Switching Example

Acknowledgement

Configuration 
Probe

Data

Circuit
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¨ Significant latency overhead prior to data transfer
¨ Other requests forced to wait for resources

[Lipasti]



Store and Forward Example
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¨ High per-hop latency
¨ Larger buffering required

[Lipasti]



Virtual Cut Through Example
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[Lipasti]

¨ Lower per-hop latency
¨ Larger buffering required



Wormhole Example

Blocked by other 
packets

Channel idle but 
red packet blocked 

behind blue

Buffer full: blue 
cannot proceed

Red holds this channel: 
channel remains idle 
until read proceeds

[Lipasti]

Allocating buffers on a flit-basis



Virtual Channel Example

Blocked by other 
packets

Buffer full: blue 
cannot proceed

[Lipasti]

Multiple flit queues per input port



Virtual Channel Buffers

¨ Single buffer per input
¨ Multiple fixed length queues per physical channel

Physical 
channels

Virtual 
channels

[Lipasti]



Routing Algorithm



Types of Routing Algorithms

¨ Deterministic
¤ Always chooses the same path for a communicating 

source-destination pair

¨ Oblivious
¤ Chooses different paths, without considering network 

state

¨ Adaptive
¤ Can choose different paths, adapting to the state of 

the network



Deterministic Routing

¨ All packets between the same (source, destination) 
pair take the same path

¨ Dimension-order routing
¤ E.g., XY routing (used in Cray T3D, and many on-chip 

networks)

¨ First traverse dimension X, then traverse dimension Y
¨ Deadlock freedom
¨ Could lead to high contention



Oblivious Routing

¨ Valiant’s Algorithm
¤ randomly choose 

intermediate node d’
¤ Route from s to d’ and 

from d’ to d.

¨ Randomizes any traffic 
pattern
¤ Balances network load
¤ Non-minimal

d’

d

s



Oblivious Routing

¨ Minimal Oblivious
¤ d’ must lie within minimum 

quadrant
¤ 6 options for d’
¤ Only 3 different paths

¨ Achieve some load 
balancing, but use 
shortest paths

d

s



Adaptive Routing

¨ Make decisions according to the current state of the 
network

¨ Local vs. global information
¤ Local states are available easily
¤ Global information more expensive

d1

d2
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Deadlock

¨ No forward progress
¨ Caused by circular dependencies on resources
¨ Each packet waits for a buffer occupied by another 

packet downstream

[Glass’92]



Handling Deadlock

¨ Analyze directions in which packets can turn in the 
network

¨ Determine the cycles that such turns can form
¨ Prohibit just enough turns to break possible cycles

[Glass’92]

The 4 allowed turnsCycles in 2D mesh
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A Typical Router Architecture

Routing Computation 

VC Arbiter

Switch Arbiter

VC1

VC2

VCv

VC1

VC2

VCv

Input Port N

Input Port 1

N x N Crossbar

Input Channel 1

Input Channel N

Scheduler

Output Channel 1

Output Channel N



Buffer-less Routing

¨ Routing buffers
¤ necessary for high throughput routing
¤ consume significant chip area and power

n 75% of die area in TRIPS IC [Gratz’06]

[Moscibroda’09]

Deflected!

Buffered Bufferless

Problem: packets may be deflected forever (livelock)



Buffer-less Routing

¨ Significant energy improvements (almost 40%)

0

0.2

0.4

0.6

0.8

1

1.2

En
er

gy
 (

no
rm

al
iz

ed
)

BufferEnergy LinkEnergy RouterEnergy

4x4,	16x	milc 8x8,	16x	milc4x4, 8x milc

[Moscibroda’09]



Networks for 3D Architectures



3D NOC Architectures

¨ Interconnection networks using die-stacking 
technology 2D Mesh Network

Stacked layers

Through 
Silicon Via 

(TSV)

[Feero’09]



Thermal Challenges

¨ Power consumption is more challenging in 3D chips
¤ Longer heat dissipation paths
¤ More transistors on chip; larger power density

¨ Resultant issues for 3D ICs
¤ Higher temperature; more leakage
¤ New set of reliability issues
¤ Performance degradation



Current Flow in TSVs

¨ Current flow is data 
dependent

¨ Every voltage level 
switching in a TSV 
consumes energy

¨ TSV switching has 
inductive effects

[Eghbal’14]

Can we reduce switching 
activity of TSVs?



Multi-layer Router Architecture

¨ Observation: many of the data flits (up to 60% of CMP 
Cache Data from real workloads) have frequent patterns 
such as all zeros or all ones

¨ Split router comps (crossbar, buffer, etc.) in the third 
dimension, and the consequent vertical interconnect (via) 
design overheads. 

[Park’08]



Summary of Possible Optimizations

¨ Architectural solutions for thermal issues
¤ Thermal-aware application layout
¤ Reducing power by reducing voltage
¤ Data compression to lower dynamic power
¤ Data encoding for reducing switching power
¤ etc.



Cache Coherence: Intro



Communication in Multiprocessors

¨ How multiple processor cores communicate?

Shared Memory Message Passing

§ Multiple threads employ 
shared memory

§ Easy for programmers 
(loads and stores)

§ Explicit communication 
through interconnection 
network

§ Simple hardware
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Shared Memory Architectures

¨ Equal latency for all 
processors

¨ Simple software 
control

¨ Access latency is 
proportional to 
proximity
¤ Fast local accesses

Uniform Memory Access Non-Uniform Memory Access
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Network Topologies

¨ Low latency
¨ Low bandwidth
¨ Simple control

¤ e.g., bus

¨ High latency
¨ High bandwidth
¨ Complex control

¤ e.g., mesh, ring

Shared Network Point to Point Network
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Challenges in Shared Memories

¨ Correctness of an application is influenced by
¤ Memory consistency

n All memory instructions appear to execute in the program 
order

n Known to the programmer

¤ Cache coherence
n All the processors see the same data for a particular 

memory address as they should have if there were no 
caches in the system

n Invisible to the programmer



Cache Coherence Problem

¨ Multiple copies of each cache block
¤ In main memory and  caches

¨ Multiple copies can get inconsistent when writes 
happen 
¤ Solution: propagate writes from one core to others
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Scenario 1: Loading From Memory

¨ Variable A initially has value 0
¨ P1 stores value 1 into A
¨ P2 loads A from memory and sees old value 0 

P1 P2

Memory

Bus

A:0

CacheCache



Scenario 2: Loading From Cache

¨ P1 and P2 both have variable A (value 0) in their 
caches

¨ P1 stores value 1 into A
¨ P2 loads A from its cache and sees old value 
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Cache Coherence

¨ The key operation is update/invalidate sent to all 
or a subset of the cores
¤ Software based management

n Flush: write all of the dirty blocks to memory
n Invalidate: make all of the cache blocks invalid

¤ Hardware based management
n Update or invalidate other copies on every write
n Send data to everyone, or only the ones who have a copy

¨ Invalidation based protocol is better. Why?


