INTERCONNECTION NETWORKS

Mahdi Nazm Bojnordi
Assistant Professor
School of Computing
University of Utah

Overview

\square Upcoming deadline

- Feb. $3^{\text {rd }}$: project group formation
- No groups have sent me emails!
\square This lecture
- Cache interconnects
- Basics of the interconnection networks
- Network topologies
- Flow control

Where Interconnects Are Used?

About 60\% of the dynamic power in modern microprocessors is dissipated in on-chip interconnects

- Analysis subject: Processor, $0.13[\mu \mathrm{~m}]$
- 77 million transistors, die size of 88 [mm^{2}]
- Data sources (AF, Capacitance, Length)
- Excluded: L2 cache, global clock, analog units
[Magen'04]

- Six processor cores
- 8MB Last level cache
[Intel Core i7]

Cache Interconnect Optimizations

Large Cache Organization

\square Fewer subarrays gives increased area efficiency, but larger delay due to longer wordlines/bitlines

Large Cache Energy Consumption

$\square \mathrm{H}$-tree is clearly the dominant component of energy consumption

- H-tree
- Decoder
- Wordlines
- Bitline mux \& drivers
- Senseamp mux \& drivers
\square Bitlines
- Sense amplifier
- Sub-array output drivers
[Aniruddha'09]

Heterogeneous Interconnects

\square A global wire management at the microarchitecture level
\square A heterogeneous interconnect that is comprised of wires with varying latency, bandwidth, and energy characteristics

Delay Optimized

Bandwidth Optimized

Power Optimized

Power and Bandwidth Optimized

Heterogeneous Interconnects

\square Better energy-efficiency for a dynamically scheduled partitioned architecture

- ED ${ }^{2}$ is reduced by 11%
\square A low-latency low-bandwidth network can be effectively used to hide wire latencies and improve performance
\square A high-bandwidth low-energy network and an instruction assignment heuristic are effective at reducing contention cycles and total processor energy.

Non-Uniform Cache Architecture

\square NUCA optimizes energy and time based on the proximity of the cache blocks to the cache controller.

Bank Access time $=3$ cycles Interconnect delay $=8$ cycles

16MB @ 50nm

Bank Access time $=3$ cycles Interconnect delay $=44$ cycles

Non-Uniform Cache Architecture

\square S-NUCA- 1

- Use private per-bank channel
- Each bank has its distinct access latency
- Statically decide data location for its given address
- Average access latency $=34.2$ cycles
- Wire overhead $=20.9 \% \rightarrow$ an issue

Non-Uniform Cache Architecture

\square S-NUCA-2

- Use a 2D switched network to alleviate wire area overhead
- Average access latency $=24.2$ cycles
- Wire overhead = 5.9\%

Non-Uniform Cache Architecture

\square Dynamic NUCA

- Data can dynamically migrate
- Move frequently used cache lines closer to CPU

Non-Uniform Cache Architecture

\square Fair mapping

- Average access time across all bank sets are equal

Non-Uniform Cache Architecture

\square Shared mapping

- Sharing the closet banks for farther banks

Encoding Based Optimizations

Cache Interconnect Optimizations

\square Bus invert coding transfers either the data or its complement to minimize the number of bit flips on the bus.

[Stan'95]

Time-Based Data Transfer

\square The percentage of processor energy expended on an 8 MB cache when running a set of parallel applications on a Sun Niagara-like multicore processor

[Bojnordi'13]

Time-Based Data Transfer

\square Communication over the long, capacitive H -tree interconnect is the dominant source of energy consumption (80% on average) in the L2 cache

[Bojnordi'13]

Time-Based Data Transfer

Key idea: represent
information by the
number of clock
cycles between two
consecutive pulses
to reduce
interconnect activity
factor.

Example: transmitting the value 5

[Bojnordi'13]

Time-Based Data Transfer

\square Cache blocks are partitioned into small, contiguous chunks.

[Bojnordi'13]

Time-Based Data Transfer

b) Receiver

Wire Delay Counter

Reset Strobe

Data Strobe

[Bojnordi'13]

Time-Based Data Transfer

$\square \mathrm{L} 2$ cache energy is reduced by 1.8 x at the cost of less than 2% increase in the execution time.

[Bojnordi'13]

Interconnection Networks

Interconnection Networks

\square Goal: transfer maximum amount of information with the minimum time and power
\square Connects processors, memories, caches, and I/O devices

Types of Interconnection Networks

\square Four domains based on number and proximity of devices

- On-chip networks (OCN or NOC)
- Microarchitectural elements: cores, caches, reg. files, etc.
- System/storage area networks (SAN)
- Computer subsystems: storage, processor, IO device, etc.
- Local area networks (LAN)

Autonomous computer systems: desktop computers etc.

- Wide area networks (WAN)
- Interconnected computers distributed across the globe

Basics of Interconnection Networks

\square Network topology

- How to wire switches and nodes in the network
\square Routing algorithm
- How to transfer a message from source to destination
\square Flow control
- How to control the flow messages within the network

