
CACHE POLICIES AND 
INTERCONNECTS

CS/ECE 7810: Advanced Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah



Overview

¨ Upcoming deadline
¤ Feb. 3rd: project group formation
¤ Note: email me once you form a group

¨ This lecture
¤ Cache replacement policies
¤ Cache partitioning
¤ Content aware optimizations
¤ Cache interconnect optimizations
¤ Encoding based optimizations



Recall: Cache Power Optimization

¨ Caches are power and performance critical 
components

¨ Performance
¤ Bridging the CPU-Mem gap

¨ Static power
¤ Large number of leaky cells

¨ Dynamic power
¤ Access through long interconnects

[source: AMD]

Example: FX Processors



Replacement Policies



Basic Replacement Policies

¨ Least Recently Used (LRU)
¨ Least Frequently Used (LFU)
¨ Not Recently Used (NRU)

¤ every block has a bit that is reset to 0 upon touch
¤ a block with its bit set to 1 is evicted
¤ if no block has a 1, make every bit 1

¨ Practical pseudo-LRU

A, A, B, X

LRU

LFU

MRU

P-LRU



Common Issues with Basic Policies

¨ Low hit rate due to cache pollution
¤ streaming (no reuse)

n A-B-C-D-E-F-G-H-I-…

¤ thrashing (distant reuse)
n A-B-C-A-B-C-A-B-C-…

¨ A large fraction of the cache is useless – blocks that 
have serviced their last hit and are on the slow walk 
from MRU to LRU



Basic Cache Policies

¨ Insertion
¤ Where is incoming line placed in replacement list?

¨ Promotion
¤ When a block is touched, it can be promoted up the 

priority list in one of many ways

¨ Victim selection
¤ Which line to replace for incoming line? (not necessarily 

the tail of the list)

Simple changes to these policies can greatly improve 
cache performance for memory-intensive workloads



Inefficiency of Basic Policies

¨ About 60% of the cache blocks may be dead on 
arrival (DoA)

[Qureshi’07]



Adaptive Insertion Policies

¨ MIP: MRU insertion policy (baseline)
¨ LIP: LRU insertion policy

[Qureshi’07]

a b c d e f g h
MRU LRU

i a b c d e f g

Traditional LRU places ‘i’ in MRU position.

a b c d e f g i

LIP places ‘i’ in LRU position; with the first touch it becomes MRU.



Adaptive Insertion Policies

¨ LIP does not age older blocks
¤ A, A, B, C, B, C, B, C, …

¨ BIP: Bimodal Insertion Policy
¤ Let e = Bimodal throttle parameter

[Qureshi’07]

LRU    MRU

if  ( rand() < e ) 
Insert at MRU position;

else
Insert at LRU position; 



Adaptive Insertion Policies

¨ There are two types of workloads: LRU-friendly or 
BIP-friendly

¨ DIP: Dynamic Insertion Policy
¤ Set Dueling

[Qureshi’07]
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Read the paper for more details.



Adaptive Insertion Policies

¨ DIP reduces average MPKI by 21% and requires 
less than two bytes storage overhead

[Qureshi’07]



Re-Reference Interval Prediction

¨ Goal: high performing scan resistant policy
¤ DIP is thrash-resistance
¤ LFU is good for recurring scans

¨ Key idea: insert blocks near the end of the list than 
at the very end

¨ Implement with a multi-bit version of NRU
¤ zero counter on touch, evict block with max counter, else 

increment every counter by one

[Jaleel’10]

Read the paper for more details.



Shared Cache Problems

¨ A thread’s performance may be significantly 
reduced due to an unfair cache sharing

¨ Question: how to control cache sharing?
¤ Fair cache partitioning [Kim’04]
¤ Utility based cache partitioning [Qureshi’06]

Shared Cache

Core 1 Core 2



Utility Based Cache Partitioning

¨ Key idea: give more cache to the application that 
benefits more from cache

[Qureshi’06]
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Three components:

q Utility Monitors (UMON) per core

q Partitioning Algorithm (PA)

q Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2Shared

L2 cache

Main Memory

UMON1 UMON2PA

Utility Based Cache Partitioning

[Qureshi’06]



Highly Associative Caches

¨ Last level caches have ~32 ways in multicores
¤ Increased energy, latency, and area overheads

[Sanchez’10]



Recall: Victim Caches

¨ Goal: to decrease conflict misses using a small FA 
cache

…

Last Level Cache
4-way SA Cache

…

Victim Cache
Small FA cache

Data

Can we reduce the hardware overheads?



The ZCache

¨ Goal:  design a highly associative cache with a low 
number of ways

¨ Improves associativity by increasing number of 
replacement candidates

¨ Retains low energy/hit, latency and area of caches 
with few ways

¨ Skewed associative cache: each way has a different 
indexing function (in essence, W direct-mapped 
caches)

[Sanchez’10]



The ZCache

¨ When block A is brought in, it could replace one of 
four (say) blocks B, C, D, E; but B could be made to 
reside in one of three other locations (currently 
occupied by F, G, H); and F could be moved to one 
of three other locations

[Sanchez’10]

Read the paper for more details.



Content Aware Optimizations



Dynamic Zero Compression

¨ More than 70% of the bits in data cache accesses 
are 0s
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Example of a small cache



Dynamic Zero Compression

¨ Zero Indicator Bit; one bit per grouping of bits; set 
if bits are zeros; controls wordline gating

[Villa’00]
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Dynamic Zero Compression

¨ Data cache bitline swing reduction

[Villa’00]
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Dynamic Zero Compression

¨ Data cache energy savings

[Villa’00]
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