
CACHE POLICIES AND
INTERCONNECTS

CS/ECE 7810: Advanced Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ Upcoming deadline
¤ Feb. 3rd: project group formation
¤ Note: email me once you form a group

¨ This lecture
¤ Cache replacement policies
¤ Cache partitioning
¤ Content aware optimizations
¤ Cache interconnect optimizations
¤ Encoding based optimizations

Recall: Cache Power Optimization

¨ Caches are power and performance critical
components

¨ Performance
¤ Bridging the CPU-Mem gap

¨ Static power
¤ Large number of leaky cells

¨ Dynamic power
¤ Access through long interconnects

[source: AMD]

Example: FX Processors

Replacement Policies

Basic Replacement Policies

¨ Least Recently Used (LRU)
¨ Least Frequently Used (LFU)
¨ Not Recently Used (NRU)

¤ every block has a bit that is reset to 0 upon touch
¤ a block with its bit set to 1 is evicted
¤ if no block has a 1, make every bit 1

¨ Practical pseudo-LRU

A, A, B, X

LRU

LFU

MRU

P-LRU

Common Issues with Basic Policies

¨ Low hit rate due to cache pollution
¤ streaming (no reuse)

n A-B-C-D-E-F-G-H-I-…

¤ thrashing (distant reuse)
n A-B-C-A-B-C-A-B-C-…

¨ A large fraction of the cache is useless – blocks that
have serviced their last hit and are on the slow walk
from MRU to LRU

Basic Cache Policies

¨ Insertion
¤ Where is incoming line placed in replacement list?

¨ Promotion
¤ When a block is touched, it can be promoted up the

priority list in one of many ways

¨ Victim selection
¤ Which line to replace for incoming line? (not necessarily

the tail of the list)

Simple changes to these policies can greatly improve
cache performance for memory-intensive workloads

Inefficiency of Basic Policies

¨ About 60% of the cache blocks may be dead on
arrival (DoA)

[Qureshi’07]

Adaptive Insertion Policies

¨ MIP: MRU insertion policy (baseline)
¨ LIP: LRU insertion policy

[Qureshi’07]

a b c d e f g h
MRU LRU

i a b c d e f g

Traditional LRU places ‘i’ in MRU position.

a b c d e f g i

LIP places ‘i’ in LRU position; with the first touch it becomes MRU.

Adaptive Insertion Policies

¨ LIP does not age older blocks
¤ A, A, B, C, B, C, B, C, …

¨ BIP: Bimodal Insertion Policy
¤ Let e = Bimodal throttle parameter

[Qureshi’07]

LRU MRU

if (rand() < e)
Insert at MRU position;

else
Insert at LRU position;

Adaptive Insertion Policies

¨ There are two types of workloads: LRU-friendly or
BIP-friendly

¨ DIP: Dynamic Insertion Policy
¤ Set Dueling

[Qureshi’07]

LRU-sets

Follower Sets

BIP-sets
n-bit cntr

+
miss

–
miss

MSB = 0?
YES No

Use LRU Use BIP

monitor è choose è apply
(using a single counter)

Read the paper for more details.

Adaptive Insertion Policies

¨ DIP reduces average MPKI by 21% and requires
less than two bytes storage overhead

[Qureshi’07]

Re-Reference Interval Prediction

¨ Goal: high performing scan resistant policy
¤ DIP is thrash-resistance
¤ LFU is good for recurring scans

¨ Key idea: insert blocks near the end of the list than
at the very end

¨ Implement with a multi-bit version of NRU
¤ zero counter on touch, evict block with max counter, else

increment every counter by one

[Jaleel’10]

Read the paper for more details.

Shared Cache Problems

¨ A thread’s performance may be significantly
reduced due to an unfair cache sharing

¨ Question: how to control cache sharing?
¤ Fair cache partitioning [Kim’04]
¤ Utility based cache partitioning [Qureshi’06]

Shared Cache

Core 1 Core 2

Utility Based Cache Partitioning

¨ Key idea: give more cache to the application that
benefits more from cache

[Qureshi’06]

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

 (M
PK

I) equake
vpr

LRU

UTIL

Three components:

q Utility Monitors (UMON) per core

q Partitioning Algorithm (PA)

q Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2Shared

L2 cache

Main Memory

UMON1 UMON2PA

Utility Based Cache Partitioning

[Qureshi’06]

Highly Associative Caches

¨ Last level caches have ~32 ways in multicores
¤ Increased energy, latency, and area overheads

[Sanchez’10]

Recall: Victim Caches

¨ Goal: to decrease conflict misses using a small FA
cache

…

Last Level Cache
4-way SA Cache

…

Victim Cache
Small FA cache

Data

Can we reduce the hardware overheads?

The ZCache

¨ Goal: design a highly associative cache with a low
number of ways

¨ Improves associativity by increasing number of
replacement candidates

¨ Retains low energy/hit, latency and area of caches
with few ways

¨ Skewed associative cache: each way has a different
indexing function (in essence, W direct-mapped
caches)

[Sanchez’10]

The ZCache

¨ When block A is brought in, it could replace one of
four (say) blocks B, C, D, E; but B could be made to
reside in one of three other locations (currently
occupied by F, G, H); and F could be moved to one
of three other locations

[Sanchez’10]

Read the paper for more details.

Content Aware Optimizations

Dynamic Zero Compression

¨ More than 70% of the bits in data cache accesses
are 0s

I/O

BUS

addr

Ad
dr

es
s

D
ec

od
er

gwl

lwl

Offset
Decoder

offset

Data
SRAM
Cells

Sense
Amps

lwl

Offset
Decoder

offset

Data
SRAM
Cells

Sense
Amps

32
128

Tag
SRAM
Cells

Tag
Comp

[Villa’00]

Example of a small cache

Dynamic Zero Compression

¨ Zero Indicator Bit; one bit per grouping of bits; set
if bits are zeros; controls wordline gating

[Villa’00]

I/O

addr

Ad
dr

es
s

D
ec

od
er

lwl

SRAM
Cells

SnsAmpoff dec

Address-controlled

BUS

lwl

SRAM
Cells

Sns Amp

ZI
B

Data-Controlled

Dynamic Zero Compression

¨ Data cache bitline swing reduction

[Villa’00]

-10

0

10

20

30

40

50

com
p li

ijpe
g go

vor
tex
m8
8k gcc pe

rl

ad
pcm
_e
n

ad
pcm
_d
e
ep
ic
une
pic

g7
21
_e
n

g7
21
_d
e

mp
eg
_e
n

mp
eg
_d
e

pe
gw
it_e
n

pe
gw
it_d
e Av

g

word
half-word
byte
half-byte

Dynamic Zero Compression

¨ Data cache energy savings

[Villa’00]

0

5

10

15

20

25

30

35

40

45

com
p li

ijpe
g go

vor
tex

m8
8k gcc pe

rl

ad
pcm
_e
n

ad
pcm
_d
e
ep
ic
un
ep
ic

g7
21
_e
n

g7
21
_d
e

mp
eg
_e
n

mp
eg
_d
e

pe
gw
it_e
n

pe
gw
it_d
e

Av
g

