
LARGE CACHE DESIGN

CS/ECE 7810: Advanced Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ Upcoming deadline
¤ Feb. 3rd: project group formation

¨ This lecture
¤ Gated Vdd/ cache decay, drowsy caches
¤ Compiler optimizations
¤ Cache replacement policies
¤ Cache partitioning
¤ Highly associative caches

Main Consumers of CPU Resources?

¨ A significant portion of the processor die is
occupied by on-chip caches

¨ Main problems in caches
¤ Power consumption

n Power on many transistors

¤ Reliability
n Increased defect rate and errors

[source: AMD]

Example: FX Processors

Leakage Power

¨ dominant source for power consumption as
technology scales down

0%

20%

40%

60%

80%

100%

1999 2001 2003 2005 2007 2009

Year

Le
ak

ag
e

Po
w

er
/T

ot
al

 P
ow

er

[source of data: ITRS]

𝑃"#$%$&# = 𝑉×𝐼+#$%$&#

Gated Vdd

¨ Dynamically resize the cache (number of sets)
¨ Sets are disabled by gating the path between Vdd

and ground (“stacking effect”)

shared among
cells in same row
(5% total area cost)

other possibilities,
e.g., virtual Vdd
(see paper)

[Powell00]

Gated Vdd Microarchitecture

number of instructions
between resizings

threshold above/below which
cache is upsized/downsized

[Powell00]

Gated-Vdd I$ Effectiveness

due to additional misses

High mis-predication costs!

[Powell00]

Cache Decay

¨ Exploits generational behavior of cache contents

100-500 cycles 1,000-500,000 cycles

[Kaxiras01]

Cache Decay

32KB L1 D-cache

¨ Fraction of time cache lines that are “dead”

[Kaxiras01]

Cache Decay Implementation

[Kaxiras01]

High mis-
predication costs!

Drowsy Caches

¨ Gated-Vdd cells lose their state
¤ Instructions/data must be refetched
¤ Dirty data must be first written back

¨ By dynamically scaling Vdd, cell is put into a
drowsy state where it retains its value
¤ Leakage drops superlinearly with reduced Vdd (“DIBL”

effect)
¤ Cell can be fully restored in a few cycles
¤ Much lower misprediction cost than gated-Vdd, but

noise susceptibility and less reduction in leakage

Drowsy Cache Organization

[Kim04]

VDD (1V)

VDDLow (0.3V)

drowsy (set)

drowsy signal

SRAMs

ro
w

 d
ec

od
er

w
or

d
lin

e
dr

iv
er

voltage controller

word line

word line

power line

word line gate

wake up (reset)

drowsy bit

drowsy

drowsy

Keeps the contents (no data loss)

Drowsy Cache Effectivenes

32KB L1 caches 4K cycle drowsy period [Kim04]

Drowsy Cache Performance Cost

[Kim04]

Software Techniques

Compiler-Directed Data Partitioning

¨ Multiple D-cache banks, each with sleep mode
¨ Lifetime analysis used to assign commonly idle data

to the same bank

variables

banks

Compiler Optimizations

¨ Loop Interchange
¤ Swap nested loops to access memory in sequential order

¨ Blocking
¤ Instead of accessing entire rows or columns, subdivide

matrices into blocks
¤ Requires more memory accesses but improves locality of

accesses

88 ■ Chapter Two Memory Hierarchy Design

is split between improvements in instruction misses and improvements in data
misses. The optimizations presented below are found in many modern compilers.

Loop Interchange

Some programs have nested loops that access data in memory in nonsequential
order. Simply exchanging the nesting of the loops can make the code access the
data in the order in which they are stored. Assuming the arrays do not fit in the
cache, this technique reduces misses by improving spatial locality; reordering
maximizes use of data in a cache block before they are discarded. For example, if x
is a two-dimensional array of size [5000,100] allocated so that x[i,j] and
x[i,j+1] are adjacent (an order called row major, since the array is laid out by
rows), then the two pieces of code below show how the accesses can be optimized:

/* Before */
for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

Figure 2.7 To illustrate write merging, the write buffer on top does not use it while
the write buffer on the bottom does. The four writes are merged into a single buffer
entry with write merging; without it, the buffer is full even though three-fourths of each
entry is wasted. The buffer has four entries, and each entry holds four 64-bit words. The
address for each entry is on the left, with a valid bit (V) indicating whether the next
sequential 8 bytes in this entry are occupied. (Without write merging, the words to the
right in the upper part of the figure would only be used for instructions that wrote mul-
tiple words at the same time.)

100

108

116

124

Write address

1

1

1

1

V

0

0

0

0

V

0

0

0

0

V

0

0

0

0

V

100

Write address

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

Mem[100]

Mem[100]

Mem[108]

Mem[108]

Mem[116]

Mem[116]

Mem[124]

Mem[124]

2.2 Ten Advanced Optimizations of Cache Performance ■ 89

/* After */
for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

The original code would skip through memory in strides of 100 words, while the
revised version accesses all the words in one cache block before going to the next
block. This optimization improves cache performance without affecting the num-
ber of instructions executed.

Blocking

This optimization improves temporal locality to reduce misses. We are again
dealing with multiple arrays, with some arrays accessed by rows and some by
columns. Storing the arrays row by row (row major order) or column by col-
umn (column major order) does not solve the problem because both rows and
columns are used in every loop iteration. Such orthogonal accesses mean that
transformations such as loop interchange still leave plenty of room for
improvement.

Instead of operating on entire rows or columns of an array, blocked algo-
rithms operate on submatrices or blocks. The goal is to maximize accesses
to the data loaded into the cache before the data are replaced. The code
example below, which performs matrix multiplication, helps motivate the
optimization:

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k + 1)

r = r + y[i][k]*z[k][j];
 x[i][j] = r;
};

The two inner loops read all N-by-N elements of z, read the same N elements in
a row of y repeatedly, and write one row of N elements of x. Figure 2.8 gives a
snapshot of the accesses to the three arrays. A dark shade indicates a recent
access, a light shade indicates an older access, and white means not yet
accessed.

The number of capacity misses clearly depends on N and the size of the cache.
If it can hold all three N-by-N matrices, then all is well, provided there are no
cache conflicts. If the cache can hold one N-by-N matrix and one row of N, then
at least the ith row of y and the array z may stay in the cache. Less than that and
misses may occur for both x and z. In the worst case, there would be 2N3 + N2

memory words accessed for N3 operations.

Blocking (1)

/* Before */
for (i=0; i<N; i++)
for(j=0; j<N; j++)

{r=0;
for (k=0; k<N; k++)

r = r + Y[i][k]*Z[k][j];
X[i][j] = r;

};
2N3 + N2 memory words accessed

Blocking (2)

/* After*/
for (jj=0; jj<N; jj = jj+B)
for(kk=0; kk<N; kk = kk+B)
for (i=0; i<N; i++)

for (j=jj; j < min(jj+B,N); j++)
{r=0;

for (k=kk; k < min(kk+B,N); k++)
r = r + Y[i][k]*Z[k][j];

X[i][j] = X[i][j] + r;
};

2N3/B + N2

Replacement Policies

Basic Replacement Policies

¨ Least Recently Used (LRU)
¨ Least Frequently Used (LFU)
¨ Not Recently Used (NRU)

¤ every block has a bit that is reset to 0 upon touch
¤ a block with its bit set to 1 is evicted
¤ if no block has a 1, make every bit 1

¨ Practical pseudo-LRU

A, A, B, X

LRU

LFU

MRU

P-LRU

Common Issues with Basic Policies

¨ Low hit rate due to cache pollution
¤ streaming (no reuse)

n A-B-C-D-E-F-G-H-I-…

¤ thrashing (distant reuse)
n A-B-C-A-B-C-A-B-C-…

¨ A large fraction of the cache is useless – blocks that
have serviced their last hit and are on the slow walk
from MRU to LRU

Basic Cache Policies

¨ Insertion
¤ Where is incoming line placed in replacement list?

¨ Promotion
¤ When a block is touched, it can be promoted up the

priority list in one of many ways

¨ Victim selection
¤ Which line to replace for incoming line? (not necessarily

the tail of the list)

Simple changes to these policies can greatly improve
cache performance for memory-intensive workloads

Inefficiency of Basic Policies

¨ About 60% of the cache blocks may be dead on
arrival (DoA)

[Qureshi’07]

Adaptive Insertion Policies

¨ MIP: MRU insertion policy (baseline)
¨ LIP: LRU insertion policy

[Qureshi’07]

a b c d e f g h
MRU LRU

i a b c d e f g

Traditional LRU places ‘i’ in MRU position.

a b c d e f g i

LIP places ‘i’ in LRU position; with the first touch it becomes MRU.

Adaptive Insertion Policies

¨ LIP does not age older blocks
¤ A, A, B, C, B, C, B, C, …

¨ BIP: Bimodal Insertion Policy
¤ Let e = Bimodal throttle parameter

[Qureshi’07]

LRU MRU

if (rand() < e)
Insert at MRU position;

else
Insert at LRU position;

Adaptive Insertion Policies

¨ There are two types of workloads: LRU-friendly or
BIP-friendly

¨ DIP: Dynamic Insertion Policy
¤ Set Dueling

[Qureshi’07]

LRU-sets

Follower Sets

BIP-sets
n-bit cntr

+
miss

–
miss

MSB = 0?
YES No

Use LRU Use BIP

monitor è choose è apply
(using a single counter)

Read the paper for more details.

Adaptive Insertion Policies

¨ DIP reduces average MPKI by 21% and requires
less than two bytes storage overhead

[Qureshi’07]

Re-Reference Interval Prediction

¨ Goal: high performing scan resistant policy
¤ DIP is thrash-resistance
¤ LFU is good for recurring scans

¨ Key idea: insert blocks near the end of the list than
at the very end

¨ Implement with a multi-bit version of NRU
¤ zero counter on touch, evict block with max counter, else

increment every counter by one

[Jaleel’10]

Read the paper for more details.

Shared Cache Problems

¨ A thread’s performance may be significantly
reduced due to an unfair cache sharing

¨ Question: how to control cache sharing?
¤ Fair cache partitioning [Kim’04]
¤ Utility based cache partitioning [Qureshi’06]

Shared Cache

Core 1 Core 2

Utility Based Cache Partitioning

¨ Key idea: give more cache to the application that
benefits more from cache

[Qureshi’06]

M
is

se
s

pe
r 1

00
0

in
st

ru
ct

io
ns

 (M
PK

I) equake
vpr

LRU

UTIL

Three components:

q Utility Monitors (UMON) per core

q Partitioning Algorithm (PA)

q Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2Shared

L2 cache

Main Memory

UMON1 UMON2PA

Utility Based Cache Partitioning

[Qureshi’06]

Highly Associative Caches

¨ Last level caches have ~32 ways in multicores
¤ Increased energy, latency, and area overheads

[Sanchez’10]

Recall: Victim Caches

¨ Goal: to decrease conflict misses using a small FA
cache

…

Last Level Cache
4-way SA Cache

…

Victim Cache
Small FA cache

Data

Can we reduce the hardware overheads?

The ZCache

¨ Goal: design a highly associative cache with a low
number of ways

¨ Improves associativity by increasing number of
replacement candidates

¨ Retains low energy/hit, latency and area of caches
with few ways

¨ Skewed associative cache: each way has a different
indexing function (in essence, W direct-mapped
caches)

[Sanchez’10]

The ZCache

¨ When block A is brought in, it could replace one of
four (say) blocks B, C, D, E; but B could be made to
reside in one of three other locations (currently
occupied by F, G, H); and F could be moved to one
of three other locations

[Sanchez’10]

Read the paper for more details.

