CACHE POWER CONSUMPTION

Mahdi Nazm Bojnordi
Assistant Professor
School of Computing
University of Utah
Overview

- Upcoming deadline
 - Feb. 3rd: project group formation

- This lecture
 - Cache power consumption
 - Cache banking
 - Way prediction
 - Resizable caches
 - Gated Vdd/ cache decay, drowsy caches
Main Consumers of CPU Resources?

- A significant portion of the processor die is occupied by on-chip caches

- Main problems in caches
 - Power consumption
 - Power on many transistors
 - Reliability
 - Increased defect rate and errors

Example: FX Processors

[source: AMD]
Recall: CPU Power Consumption

- Major power consumption issues

Peak Power/Power Density
- Heat
 - Packaging, cooling, component spacing
- Switching noise
 - Decoupling capacitors

Average Power
- Battery life
 - Bulkier battery
- Utility costs
 - Probability, cannot run your business!

Caches generate little heat (low activity factor)

Caches consume high average power (~1/3)
Cache Power Management

- Circuit techniques
 - Transistor sizing, multi-Vt, low-swing bit-lines, etc.

- Microarchitecture techniques
 - Static techniques
 - banking, phased tag/data access, way prediction
 - Dynamic techniques
 - gated-Vdd, cache decay, drowsy caches

- Compiler techniques
 - Data partitioning to enable sleep mode
Recall: Cache Lookup

- Byte offset: to select the requested byte
- Tag: to maintain the address
- Valid flag (v): whether content is meaningful
- Data and tag are always accessed
Cache Architecture

- Physical cache structure

[CACTI 1.0]
Cache Banking

- Divide cache into multiple identical arrays
 - **Static power:** unused arrays may be turned off
 - **Dynamic power:** only the target arrays is accessed

[Source: CACTI]
Basic Set Associative Cache

Power per access: 4T + 4D
Phased N-way Cache

- Power per access: 4T + 1D
- But access time increases
Way-prediction N-way Cache

Correct prediction: 1T + 1D
Predict instead of sequential tag access

[Powell02]
Way Prediction Summary

- To improve hit time, predict the way to pre-set Mux
 - Mis-prediction gives longer hit time
 - Prediction accuracy
 - > 90% for two-way
 - > 80% for four-way
 - I-cache has better accuracy than D-cache
 - First used on MIPS R10000 in mid-90s
 - Used on ARM Cortex-A8

- Extend to predict block as well
 - “Way selection”
 - Increases mis-prediction penalty
Cache Size

- Energy dissipation of on-chip cache and off-chip memory

Can we dynamically resize cache? Ways, sets, or blocks? [Zhang04]
Resizable Caches

- Resizable caches turn off portions of the cache that are not heavily used by the running program

[Albonesi99]
Leakage Power

- dominant source for power consumption as technology scales down

\[P_{\text{leakage}} = V \times I_{\text{leakage}} \]

[source of data: ITRS]
Dynamic Techniques for Leakage

- Three example microarchitectural approaches
 - Gated-Vdd
 - Gate the supply-to-ground path
 - Cache decay
 - Same gating mechanism but different control policy
 - Drowsy caches
 - Reduce the Vdd in order to retain cell state