CACHE POWER CONSUMPTION

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

UNIVERSITY

F UTAH

THE

CS/ECE 7810: Advanced Computer Architecture

Overview

- Upcoming deadline
 - Feb. 3rd: project group formation
- This lecture
 - Cache power consumption
 - Cache banking
 - Way prediction
 - Resizable caches
 - Gated Vdd/ cache decay, drowsy caches

Main Consumers of CPU Resources?

A significant portion of the processor die is occupied by on-chip caches

Main problems in caches

Power consumption

Power on many transistors

Reliability

Increased defect rate and errors

Example: FX Processors

[source: AMD]

Recall: CPU Power Consumption

Major power consumption issues

Peak Power/Power Density

Heat

- Packaging, cooling, component spacing
- Switching noise
 - Decoupling capacitors

Average Power

- Battery life
 - Bulkier battery
- Utility costs
 - Probability, cannot run your business!

Caches generate little heat (low activity factor) Caches consume high average power (~1/3)

Cache Power Management

- Circuit techniques
 - Transistor sizing, multi-Vt, low-swing bit-lines, etc.
- Microarchitecture techniques
 - Static techniques
 - banking, phased tag/data access, way prediction
 - Dynamic techniques
 - gated-Vdd, cache decay, drowsy caches
- Compiler techniques
 - Data partitioning to enable sleep mode

Recall: Cache Lookup

- Byte offset: to select the requested byte
- Tag: to maintain the address
- Valid flag (v):
 whether content is
 meaningful
- Data and tag are always accessed

Cache Architecture

Physical cache structure

Cache Banking

- Divide cache into multiple identical arrays
 Static power: unused arrays may be turned off
 - Dynamic power: only the target arrays is accessed

Basic Set Associative Cache

Phased N-way Cache

But access time increases

Way-prediction N-way Cache

Predict instead of sequential tag access

[Powell02]

Way Prediction Summary

To improve hit time, predict the way to pre-set Mux

- Mis-prediction gives longer hit time
- Prediction accuracy
 - > 90% for two-way
 - > 80% for four-way
 - I-cache has better accuracy than D-cache
- First used on MIPS R10000 in mid-90s
- Used on ARM Cortex-A8
- Extend to predict block as well
 - "Way selection"
 - Increases mis-prediction penalty

Cache Size

Energy dissipation of on-chip cache and off-chip memory

Can we dynamically resize cache? Ways, sets, or blocks?

[Zhang04]

Resizable Caches

Resizable caches turn off portions of the cache that are not heavily used by the running program

[Albonesi99]

Leakage Power

dominant source for power consumption as technology scales down

 $P_{leakage} = V \times I_{Leakage}$

[source of data: ITRS]

Dynamic Techniques for Leakage

Three example microarchitectural approaches

Gated-Vdd

Gate the supply-to-ground path

Cache decay

Same gating mechanism but different control policy

Drowsy caches

Reduce the Vdd in order to retain cell state