SHARED MEMORY SYSTEMS

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , :
U S A CS/ECE 6810: Computer Architecture

Overview
"

Announcement
O Final exam: in-class, 10:30AM-12:30PM, Dec. 13t

This lecture
O Shared memory systems
O Cache coherence with write back policy

O Memory consistency

Recall: Cache Coherence Problem

Multiple copies of each cache block

O In main memory and caches

Multiple copies can get inconsistent when writes
happen

O Solution: propagate writes from one core to others

D - @

Cache Cache

T T
Main Memory

Cache Coherence
-

The key operation is update /invalidate sent to all
or a subset of the cores
O Software based management

Flush: write all of the dirty blocks to memory

Invalidate: make all of the cache blocks invalid

O Hardware based management
Update or invalidate other copies on every write

Send data to everyone, or only the ones who have a copy

Invalidation based protocol is better. Why?

Snoopy Protocol

Relying on a broadcast infrastructure among caches

O For example shared bus

Every cache monitors (snoop) the traffic on the
shared media to keep the states of the cache block
up to date

Memory

Simple Snooping Protocol

Relies on write-through, write no-allocate cache

Multiple readers are allowed

O Writes invalidate replicas

Employs a simple state machine for each cache unit

Cache

Bus

A:0

Cache

Memory

Simple Snooping State Machine

Every node updates its one-bit
valid flag using a simple finite tead~ Store/BusWr
state machine (FSM)

Processor actions

Load/BusRd BusWr/--

i

O Load, Store, Evict

Bus traffic
O BusRd, BusWr

Store/BusWr

— Transaction by local actions
----- » Transaction by bus traffic

Shared Memory Systems
S

Multiple threads employ a shared memory system

O Easy for programmers

Complex synchronization mechanisms are required

O Cache coherence

All the processors see the same data for a particular memory
address as they should have if there were no caches in the system

e.g., shoopy protocol with write-through, write no-allocate
m |nefficient
O Memory consistency
All memory instructions appear to execute in the program order

e.g., sequential consistency

Snooping with Writeback Policy

Problem: writes are not propagated to memory until
eviction

O Cache data maybe different from main memory

Solution: identify the owner of the most recently
updated replica

O Every data may have only one owner at any time
O Only the owner can update the replica

O Multiple readers can share the data

No one can write without gaining ownership first

Modified-Shared-Invalid Protocol
-

Every cache block transitions among three states
O Invalid: no replica in the cache

O Shared: a read-only copy in the cache
Multiple units may have the same copy

O Modified: a writable copy of the data in the cache
The replica has been updated
The cache has the only valid copy of the data block

Processor actions
O Load, store, evict

Bus messages
O BusRd, BusRdX, Businv, BusWB, BusReply

MSI| Example

Load/BusRd

BusRd
BUS
BusReply

MSI| Example

'/’\‘ BusRd/[BusReply]

&

Load/--

S I

Load/BusRd

BusRd
BUS

MSI| Example

'/\‘ BusRd/[BusReply]

Load/BusRd

Evict/-- Load/--

BUS

MSI| Example

'/\‘ BusRd/[BusReply]

Load/BusRd

BusRdX/[BusReply]

Evict/-- Load/--

P
©
Y
w0
>
m
I
S @ @
)
Store
S I
modified BUS

Load, Store/--

MSI| Example

7N\
Load/BusRd " \‘BUSRd/[BUSRepIy]

BusRdX/[BusReply]

Store/BusRdX

modified BUS

Load, Store/--

MSI| Example

7\
Load/BUSRd " \‘BUSRd/[BUSReply]

Businv,BusRdX/[BusReply]

Store/BusRdX

Store/Businv

modified BUS

Load, Store/--

MSI| Example

7\
Load/BUSRd " \‘BUSRd/[BUSReply]

Businv,BusRdX/[BusReply]

\
\ Load/--
\ >
et \' a5
© \' o
0 \ o
/)] \ N
> 1 S
m ‘lm
= .
o 15
9o | S /
7 I5
= Store
II @ i’
/ U4
,/ Store/Businv M |
U4

modified BUS

Load, Store/--

MSI| Example

7\
| oad/BusRd ! \‘Bust/[BusRepIy]
____lBy_slrl\ﬁI?ustX/[BusReply] @

\ Evict/-- =" . Load/—

Vo> -~
é “ o a”
r| 2 \ -~
o = \'w -’
> (7)) ’
ol g i
o\ § i% ./"BusRd/BusReply @ @
9 L]
) > 1 x l/

Ll 1 & / .
I,' 3, Evict
U4
/] ,/ Store/Businv | M
U4
BusWB
modified BUS

Load, Store/--

Modified, Exclusive, Shared, Invalid

-
Also known as lllinois protocol
O Employed by real processors
O A cache may have an exclusive copy of the data
O The exclusive copy may be copied between caches
Pros
O No invalidation traffic on write-hits in the E state
O Lower overheads in sequential applications
Cons
O More complex protocol

O Longer memory latency due to the protocol

Alternatives to Snoopy Protocols

Problem: snooping based protocols are not scalable
O Shared bus bandwidth is limited

O Every node broadcasts messages and monitors the bus

Solution: limit the traffic using directory structures

O Home directory keeps track of sharers of each block

Cache

|

Cache

Directory

|

Cache

|

Directory

|

Cache

|

Directory

|

|

Directory

|

Interconnection Network

Memory Consistency Model
S

Memory operations are reordered to improve
performance

A memory consistency model for a shared address
space specifies constraints on the order in which
memory operations must appear to be performed
with respect to one another.

Initially A=flag =0

P1 P2

What is the
A=1; while (flag==0); expected output of
flag = 1; printf (“%d”, A); this application?

Memory Consistency
S

Recall: load-store queue architecture

O Check availability of operands
O Compute the effective address

O Send the request to memory if no memory hazards

Initially A=flag =0

P1 P2
(2) A=1; while (flag==0); 0
(1) flag = 1; orintf (“%d”, A); = 1

Dekker’s Algorithm Example
-

Critical region with mutually exclusive access

O Any time, one process is allowed to be in the region

Reordering in load-store queue may result in failure

Initially A=B =0
P1 P2
(2) LOCK A:A=1; (2) LOCK B:B=1;
(1) if (B!=0){ (1) if (A!=0){
A= O, B= O’
goto LOCK_A; goto LOCK B;

}

}
/... /...
A=0, B:O,

Sequential Consistency

1. within a program, program order is preserved
2. each instruction executes atomically

3. instructions from different threads can be
interleaved arbitrarily

2. aAbBcCdDeE
3. ABCDEabcde

P1 P2 .
1. abAcBCDdeE /r(

Qo0 oW
OO m>

Memory

Bad Performance!

Relaxed Consistency Model
S —

Real processors do not implement sequential consistency
O Not all instructions need to be executed in program order

O e.g., a read can bypass earlier writes

A fence instruction can be used to enforce ordering
among memory instructions

O e.g., Dekker’s algorithm with fence

P1 P2
‘n°rn°re LOCK A: A=1; LOCK B: B =1; s 8 .
= 5 B fence; fence; d-H.-H.H. 4.
if (B !=0){ if (A!=0){
LB A=0: B=0: L

goto LOCK_A; goto LOCK_B;
} }

Fence Example
-

P1 P2

{ {

Region of code Region of code

with no races with no races
} }
Fence Fence
Acquire_lock Acquire_lock
Fence Fence
{ {

Racy code Racy code
} }
Fence Fence
Release lock Release lock

Fence Fence

