
SHARED MEMORY SYSTEMS

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ Announcement
¤ Final exam: in-class, 10:30AM-12:30PM, Dec. 13th

¨ This lecture
¤ Shared memory systems
¤ Cache coherence with write back policy
¤ Memory consistency

Recall: Cache Coherence Problem

¨ Multiple copies of each cache block
¤ In main memory and caches

¨ Multiple copies can get inconsistent when writes
happen
¤ Solution: propagate writes from one core to others

core
1

Core
N

Cache
1

Cache
N

…

Main Memory

Cache Coherence

¨ The key operation is update/invalidate sent to all
or a subset of the cores
¤ Software based management

n Flush: write all of the dirty blocks to memory
n Invalidate: make all of the cache blocks invalid

¤ Hardware based management
n Update or invalidate other copies on every write
n Send data to everyone, or only the ones who have a copy

¨ Invalidation based protocol is better. Why?

Snoopy Protocol

¨ Relying on a broadcast infrastructure among caches
¤ For example shared bus

¨ Every cache monitors (snoop) the traffic on the
shared media to keep the states of the cache block
up to date

Core Core

Memory

…

LLC

L1 L1

Core Core

Memory

…

LLC

L1 L1

Simple Snooping Protocol

¨ Relies on write-through, write no-allocate cache
¨ Multiple readers are allowed

¤ Writes invalidate replicas
¨ Employs a simple state machine for each cache unit

P1 P2

Memory

Bus

A:0

CacheCache

Simple Snooping State Machine

¨ Every node updates its one-bit
valid flag using a simple finite
state machine (FSM)

¨ Processor actions
¤ Load, Store, Evict

¨ Bus traffic
¤ BusRd, BusWr

Valid

Invalid

Store/BusWrLoad/--

Evict/--

Store/BusWr

BusWr/--Load/BusRd

Transaction by local actions
Transaction by bus traffic

Shared Memory Systems

¨ Multiple threads employ a shared memory system
¤ Easy for programmers

¨ Complex synchronization mechanisms are required
¤ Cache coherence

n All the processors see the same data for a particular memory
address as they should have if there were no caches in the system

n e.g., snoopy protocol with write-through, write no-allocate
n Inefficient

¤ Memory consistency
n All memory instructions appear to execute in the program order
n e.g., sequential consistency

Snooping with Writeback Policy

¨ Problem: writes are not propagated to memory until
eviction
¤ Cache data maybe different from main memory

¨ Solution: identify the owner of the most recently
updated replica
¤ Every data may have only one owner at any time
¤ Only the owner can update the replica
¤ Multiple readers can share the data

n No one can write without gaining ownership first

Modified-Shared-Invalid Protocol

¨ Every cache block transitions among three states
¤ Invalid: no replica in the cache
¤ Shared: a read-only copy in the cache

n Multiple units may have the same copy
¤ Modified: a writable copy of the data in the cache

n The replica has been updated
n The cache has the only valid copy of the data block

¨ Processor actions
¤ Load, store, evict

¨ Bus messages
¤ BusRd, BusRdX, BusInv, BusWB, BusReply

MSI Example

P1 P2

I I

Load/BusRd

BUS

invalid shared

Load

BusRd

BusReply

MSI Example

P1 P2

S I

Load/--

BusRd/[BusReply]Load/BusRd

invalid shared

BUS
BusRd

Load

MSI Example

P1 P2

S S

Load/--

BusRd/[BusReply]Load/BusRd

Evict/--

invalid shared

BUS

Evict

MSI Example

P1 P2

S I

Load, Store/--

Load/--

BusRd/[BusReply]Load/BusRd

Evict/--

BusRdX/[BusReply]

St
or

e/
Bu

sR
dX

invalid shared

modified BUS

Store

MSI Example

P1 P2

I M

Load, Store/--

Load/--

BusRd/[BusReply]Load/BusRd

Evict/--

St
or

e/
Bu

sR
dX

BusRd/BusReply

invalid shared

modified BUS

BusRdX/[BusReply]

Load

MSI Example

P1 P2

S S

Load, Store/--

Load/--

BusRd/[BusReply]Load/BusRd

Evict/--

BusInv,BusRdX/[BusReply]

St
or

e/
Bu

sR
dX

Store/BusInv

BusRd/BusReply

invalid shared

modified BUS

Store

MSI Example

P1 P2

M I

Load, Store/--

Load/--

BusRd/[BusReply]Load/BusRd

Evict/--

BusInv,BusRdX/[BusReply]

St
or

e/
Bu

sR
dX

Bu
sR

dX
/B

us
R

ep
ly

Store/BusInv

BusRd/BusReply

invalid shared

modified BUS

Store

MSI Example

P1 P2

I M

Load, Store/--

Load/--

BusRd/[BusReply]Load/BusRd

Evict/--

BusInv,BusRdX/[BusReply]

St
or

e/
Bu

sR
dX

Bu
sR

dX
/B

us
R

ep
ly

Store/BusInv

BusRd/BusReply

invalid shared

modified BUS

Evict

BusWB

Modified, Exclusive, Shared, Invalid

¨ Also known as Illinois protocol
¤ Employed by real processors
¤ A cache may have an exclusive copy of the data
¤ The exclusive copy may be copied between caches

¨ Pros
¤ No invalidation traffic on write-hits in the E state
¤ Lower overheads in sequential applications

¨ Cons
¤ More complex protocol
¤ Longer memory latency due to the protocol

Alternatives to Snoopy Protocols

¨ Problem: snooping based protocols are not scalable
¤ Shared bus bandwidth is limited
¤ Every node broadcasts messages and monitors the bus

¨ Solution: limit the traffic using directory structures
¤ Home directory keeps track of sharers of each block

Interconnection Network

Core

Cache

Directory

Core

Cache

Directory

Core

Cache

Directory

Core

Cache

Directory

Memory Consistency Model

¨ Memory operations are reordered to improve
performance

¨ A memory consistency model for a shared address
space specifies constraints on the order in which
memory operations must appear to be performed
with respect to one another.

P1 P2

A=1;
flag = 1;

while (flag==0);
printf (“%d”, A);

Initially A = flag = 0

What is the
expected output of
this application?

Memory Consistency

¨ Recall: load-store queue architecture
¤ Check availability of operands
¤ Compute the effective address
¤ Send the request to memory if no memory hazards

P1 P2

A=1;
flag = 1;

while (flag==0);
printf (“%d”, A);

Initially A = flag = 0

(1)
(2) 0

1

Dekker’s Algorithm Example

¨ Critical region with mutually exclusive access
¤ Any time, one process is allowed to be in the region

¨ Reordering in load-store queue may result in failure

P1 P2

LOCK_A: A = 1;
if (B != 0) {

A = 0;
goto LOCK_A;

}
// …
A = 0;

Initially A = B = 0

LOCK_B: B = 1;
if (A != 0) {

B = 0;
goto LOCK_B;

}
// …
B = 0;

(2)
(1)

(2)
(1)

Sequential Consistency

¨ 1. within a program, program order is preserved
¨ 2. each instruction executes atomically
¨ 3. instructions from different threads can be

interleaved arbitrarily

Bad Performance!

P1 P2

a
b
c
d

A
B
C
D

1. abAcBCDdeE
2. aAbBcCdDeE
3. ABCDEabcde

P1 P2 Pn…

Memory

Relaxed Consistency Model

¨ Real processors do not implement sequential consistency
¤ Not all instructions need to be executed in program order
¤ e.g., a read can bypass earlier writes

¨ A fence instruction can be used to enforce ordering
among memory instructions
¤ e.g., Dekker’s algorithm with fence

P1 P2

LOCK_A: A = 1;
fence;
if (B != 0) {

A = 0;
goto LOCK_A;

}

LOCK_B: B = 1;
fence;
if (A != 0) {

B = 0;
goto LOCK_B;

}

Fence Example

P1 P2
{ {
Region of code Region of code
with no races with no races

} }

Fence Fence
Acquire_lock Acquire_lock
Fence Fence

{ {
Racy code Racy code

} }

Fence Fence
Release_lock Release_lock
Fence Fence

