
THREAD LEVEL PARALLELISM

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ Announcement
¤ Final exam: in-class, 10:30AM-12:30PM, Dec. 13th

¨ This lecture
¤ Communication in multiprocessors
¤ Shared memory system
¤ Cache coherence

Communication in Multiprocessors

Communication in Multiprocessors

¨ How multiple processor cores communicate?

Shared Memory Message Passing

§ Multiple threads employ
shared memory

§ Easy for programmers
(loads and stores)

§ Explicit communication
through interconnection
network

§ Simple hardware

Core
1

Core
N

Shared Memory

… Core
1

Core
N

Mem Mem

…

Interconnection Network

Shared Memory Architectures

¨ Equal latency for all
processors

¨ Simple software
control

¨ Access latency is
proportional to
proximity
¤ Fast local accesses

Uniform Memory Access Non-Uniform Memory Access

Core
1

Core
4

Memory

… Core
1

Mem

Router

Core
4

Mem

Router

…

Example UMA Example NUMA

Network Topologies

¨ Low latency
¨ Low bandwidth
¨ Simple control

¤ e.g., bus

¨ High latency
¨ High bandwidth
¨ Complex control

¤ e.g., mesh, ring

Shared Network Point to Point Network

Core
1

Mem

Router

Core
4

Mem

Router

…

Core
1

Mem

Router

Core
2

Mem

Router

Core
4 Mem

Router
Core

3 Mem

Router

Challenges in Shared Memories

¨ Correctness of an application is influenced by
¤ Memory consistency

n All memory instructions appear to execute in the program
order

n Known to the programmer

¤ Cache coherence
n All the processors see the same data for a particular

memory address as they should have if there were no
caches in the system

n Invisible to the programmer

Cache Coherence Problem

¨ Multiple copies of each cache block
¤ In main memory and caches

¨ Multiple copies can get inconsistent when writes
happen
¤ Solution: propagate writes from one core to others

core
1

Core
N

Cache
1

Cache
N

…

Main Memory

Scenario 1: Loading From Memory

¨ Variable A initially has value 0
¨ P1 stores value 1 into A
¨ P2 loads A from memory and sees old value 0

P1 P2

Memory

Bus

A:0

CacheCache

Scenario 2: Loading From Cache

¨ P1 and P2 both have variable A (value 0) in their
caches

¨ P1 stores value 1 into A
¨ P2 loads A from its cache and sees old value

P1 P2

Memory

Bus

A:0

CacheCache

Cache Coherence

¨ The key operation is update/invalidate sent to all
or a subset of the cores
¤ Software based management

n Flush: write all of the dirty blocks to memory
n Invalidate: make all of the cache blocks invalid

¤ Hardware based management
n Update or invalidate other copies on every write
n Send data to everyone, or only the ones who have a copy

¨ Invalidation based protocol is better. Why?

