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Overview

¨ Announcement
¤ Final exam: in-class, 10:30AM-12:30PM, Dec. 13th

¨ This lecture
¤ Thread level parallelism (TLP)

n Hardware multithreading
n Multiprocessing

¤ TLP Challenges
n Communication



Hardware Multithreading



Recall: Hardware Multithreading

¨ Observation: CPU become idle due to latency of 
memory operations, dependent instructions, and 
branch resolution

¨ Key idea: utilize idle resources to improve 
performance
¤ Support multiple thread contexts in a single processor
¤ Exploit thread level parallelism

¨ Challenge: the energy and performance costs of 
context switching



Coarse Grained Multithreading

¨ Single thread runs until a costly stall—e.g. last level 
cache miss

¨ Another thread starts during stall for first
¤ Pipeline fill time requires several cycles!

¨ At any time, only one thread is in the pipeline
¨ Does not cover short stalls
¨ Needs hardware support

¤ PC and register file for each thread 



Coarse Grained Multithreading

¨ Superscalar vs. CGMT
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Fine Grain Multithreading

¨ Two or more threads interleave instructions
¤ Round-robin fashion
¤ Skip stalled threads

¨ Needs hardware support
¤ Separate PC and register file for each thread
¤ Hardware to control alternating pattern

¨ Naturally hides delays
¤ Data hazards, Cache misses
¤ Pipeline runs with rare stalls

¨ Does not make full use of multi-issue architecture



Fine Grained Multithreading

¨ CGMT vs. FGMT
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Simultaneous Multithreading

¨ Instructions from multiple threads issued on same 
cycle
¤ Uses register renaming and dynamic scheduling facility 

of multi-issue architecture
¨ Needs more hardware support

¤ Register files, PC’s for each thread
¤ Temporary result registers before commit
¤ Support to sort out which threads get results from which 

instructions
¨ Maximizes utilization of execution units



Simultaneous Multithreading

¨ FGMT vs. SMT
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Recall: TLP Architectures

¨ Architectures for exploiting thread-level parallelism

Multiprocessing

q Different threads run on 
different processors

q Two general types
o Symmetric multiprocessors 

(SMP)
§ Single CPU per chip

o Chip Multiprocessors (CMP)
§ Multiple CPUs per chip

Hardware Multithreading

q Multiple threads run on the 
same processor pipeline

q Multithreading levels
o Coarse grained 

multithreading (CGMT)
o Fine grained multithreading 

(FGMT)
o Simultaneous multithreading 

(SMT)



Multiprocessing



Symmetric Multiprocessors

¨ Multiple CPU chips share the same 
memory

¨ From the OS’s point of view
¤ All of the CPUs have equal compute 

capabilities
¤ The main memory is equally accessible 

by the CPU chips

¨ OS runs every thread on a CPU
¨ Every CPU has its own power 

distribution and cooling system
AMD Opteron
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Chip Multiprocessors

¨ Can be viewed as a simple SMP on 
single chip

¨ CPUs are now called cores
¤ One thread per core

¨ Shared higher level caches
¤ Typically the last level
¤ Lower latency
¤ Improved bandwidth

¨ Not necessarily homogenous cores!

Intel Nehalem (Core i7)

Core 
0

Core 
1

Core 
3

…

Shared 
cache



Why Chip Multiprocessing?

¨ CMP exploits parallelism at lower costs than SMP
¤ A single interface to the main memory
¤ Only one CPU socket is required on the motherboard

¨ CMP requires less off-chip communication
¤ Lower power and energy consumption
¤ Better performance due to improved AMAT

¨ CMP better employs the additional transistors that 
are made available based on the Moore’s law
¤ More cores rather than more complicated pipelines



Efficiency of Chip Multiprocessing

¨ Ideally, n cores provide nx performance
¨ Example: design an ideal dual-processor

¤ Goal: provide the same performance as uniprocessor

Uniprocessor Dual-processor
Frequency 1 ?

Voltage 1 ?

Execution Time 1 1

Dynamic Power 1 ?

Dynamic Energy 1 ?

Energy Efficiency 1 ?



Efficiency of Chip Multiprocessing

¨ Ideally, n cores provide nx performance
¨ Example: design an ideal dual-processor

¤ Goal: provide the same performance as uniprocessor

Uniprocessor Dual-processor
Frequency 1 0.5

Voltage 1 0.5

Execution Time 1 1

Dynamic Power 1 2x0.125

Dynamic Energy 1 2x0.125

Energy Efficiency 1 4

f�V & P�V3 à Vdual = 0.5Vuni à Pdual = 2×0.125Puni



TLP Challenges



Example Code I

¨ A sequential application runs as a single thread

void kern (int start, int end) {
int i;
for(i=start; i<=end; ++i) {

A[i] = A[i] * A[i] + 5;
}

}

Kernel Function:
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Example Code I

¨ A sequential application runs as a single thread

void kern (int start, int end) {
int i;
for(i=start; i<=end; ++i) {

A[i] = A[i] * A[i] + 5;
}

}

Kernel Function: Memory

Processor

A
1 n…

main() {
…
kern (1, n);
…

}

Single Thread



Example Code I

¨ Two threads operating on separate partitions

void kern (int start, int end) {
int i;
for(i=start; i<=end; ++i) {

A[i] = A[i] * A[i] + 5;
}

}

Kernel Function: Memory

Processor Processor

A
1 n…

How to run the kernel on two processors?



Example Code I

¨ Two threads operating on separate partitions

void kern (int start, int end) {
int i;
for(i=start; i<=end; ++i) {

A[i] = A[i] * A[i] + 5;
}

}

Kernel Function: Memory

Processor

main() {
…
kern (1, n/2);
…

}

Thread 0

A
1 n

Processor

kern (n/2+1, n);

Thread 1



Performance of Parallel Processing

¨ Recall: Amdahl’s law for theoretical speedup
¤ Overall speedup is limited to the fraction of the 

program that can be executed in parallel

speedup = !
"#$%&'
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Example Code II

¨ A single location is updated every time
Kernel Function: Memory

Processor
Thread 0

A
1 n

main() {
…
kern (1, n);
…

}

void kern (int start, int end) {
int i;
for(i=start; i<=end; ++i) {

sum = sum + A[i];
}

}
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Example Code II

¨ Two threads operating on separate partitions
Kernel Function: Memory

Processor
Thread 0

A
1 n

Processor

kern (n/2+1, n);

Thread 1

main() {
…
kern (1, n/2);
…

}

void kern (int start, int end) {
int i;
for(i=start; i<=end; ++i) {

sum = sum + A[i];
}

}

sum


