THREAD LEVEL PARALLELISM

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , :
U S A CS/ECE 6810: Computer Architecture

Overview
"

Announcement
O Final exam: in-class, 10:30AM-12:30PM, Dec. 13t

This lecture

O Thread level parallelism (TLP)
Hardware multithreading

Multiprocessing

O TLP Challenges

Communication

Hardware Multithreading

Recall: Hardware Multithreading
-

Observation: CPU become idle due to latency of
memory operations, dependent instructions, and
branch resolution

Key idea: utilize idle resources to improve
performance

O Support multiple thread contexts in a single processor
O Exploit thread level parallelism

Challenge: the energy and performance costs of
context switching

Coarse Grained Multithreading
e

Single thread runs until a costly stall—e.g. last level
cache miss

Another thread starts during stall for first
O Pipeline fill time requires several cycles!
At any time, only one thread is in the pipeline

Does not cover short stalls

Needs hardware support

O PC and register file for each thread

Coarse Grained Multithreading

"
Superscalar vs. CGMT

FU1 FU2 FU3 FU4

Conventional Superscalar

Coarse Grained Multithreading

"
Superscalar vs. CGMT

FU1 FU2 FU3 FU4

-
c
ry

FU2 FU3 FU4

Conventional Superscalar
Coarse Grained Multithreading

Fine Grain Multithreading
-

Two or more threads interleave instructions

O Round-robin fashion
O Skip stalled threads

Needs hardware support

O Separate PC and register file for each thread
O Hardware to control alternating pattern
Naturally hides delays

O Data hazards, Cache misses

O Pipeline runs with rare stalls

Does not make full use of multi-issue architecture

Fine Grained Multithreading

CGMT vs. FGMT

FU1 FU2 FU3 FU4

BuipeaJylij|n\ paulels) asieo)

Fine Grained Multithreading
CGMT vs. FGMT

-
: ANDNERNNERE
LL

BuipeaJynIny pauleso aulg

FU2 FU3 FU4

Buipealyj3ny paulels) asieo)

FU1 FU2 FU3 FU4

Simultaneous Multithreading

Instructions from multiple threads issued on same
cycle

O Uses register renaming and dynamic scheduling facility
of multi-issue architecture

Needs more hardware support
O Register files, PC’s for each thread
O Temporary result registers before commit

O Support to sort out which threads get results from which
instructions

Maximizes utilization of execution units

Simultaneous Multithreading

FGMT vs. SMT

<

z]

LL

™

4l EN =
LL

N

4 L
LL

-

: IRENENNEENE
LL

Buipealyniniy pauless auid

Simultaneous Multithreading

FGMT vs. SMT

U 7
F

™
: BENENENN NN NN
L.
N
: INENENNENTE
L.
-
: INEEENENETE
L.

Buipealyji3|n|\ snosue}NWIS

FU2 FU3 FU4

-
: AN EEENREEN
LL

BuipeasyiIn pauless aulg

Recall: TLP Architectures
O

Architectures for exploiting thread-level parallelism

 Multiple threads run on the
same processor pipeline
 Multithreading levels

o Coarse grained
multithreading (CGMT)

o Fine grained multithreading
(FGMT)

o Simultaneous multithreading
(SMT)

Hardware Multithreading Multiprocessing

[Different threads run on
different processors

 Two general types
O Symmetric multiprocessors
(SMP)
= Single CPU per chip
o Chip Multiprocessors (CMP)
= Multiple CPUs per chip

Multiprocessing

Symmetric Multiprocessors

-0
Multiple CPU chips share the same
memory
From the OS’s point of view

O All of the CPUs have equal compute
capabilities

O The main memory is equally accessible
by the CPU chips

OS runs every thread on a CPU

Every CPU has its own power
distribution and cooling system

Symmetric Multiprocessors

memory

Multiple CPU chips share the same
e

From the OS’s point of view

O All of the CPUs have equal compute Ea

capabilities

O The main memory is equally accessible
by the CPU chips

OS runs every thread on a CPU

Every CPU has its own power
distribution and cooling system

Chip Multiprocessors

Can be viewed as a simple SMP on

Single Chip [Core} [Core\ Core
0 1) [3 I

CPUs are now called cores

O One thread per core Shared

cache

Shared higher level caches

O Typically the last level

| IntegratediMembry Contraliés-13ich DBR3
O Lower latency e

(| |mproved bandwidth ‘ Core 0. Core 1 Core2 . Core:3

Not necessarily homogenous cores! FiiE s vens s

© Shared L3 Cache =

Intel Nehalem (Core i7)

Why Chip Multiprocessing?
-
CMP exploits parallelism at lower costs than SMP
O A single interface to the main memory
O Only one CPU socket is required on the motherboard
CMP requires less off-chip communication
O Lower power and energy consumption
O Better performance due to improved AMAT
CMP better employs the additional transistors that
are made available based on the Moore’s law

O More cores rather than more complicated pipelines

Efficiency of Chip Multiprocessing

ldeally, n cores provide nx performance

Example: design an ideal dual-processor

O Goal: provide the same performance as uniprocessor

_ Uniprocessor Dual-processor

Frequency 1 ¢
Voltage 1 ¢
Execution Time 1 1
Dynamic Power 1 ¢
Dynamic Energy 1 2

Energy Efficiency 1 2

Efficiency of Chip Multiprocessing
00000000
ldeally, n cores provide nx performance

Example: design an ideal dual-processor

O Goal: provide the same performance as uniprocessor

feV&PEVD>V, =05V, > P, =2x0.125P,,

uni

_ Uniprocessor Dual-processor

Frequency 1 0.5
Voltage 1 0.5
Execution Time 1 1
Dynamic Power 1 2x0.125
Dynamic Energy 1 2x0.125

Energy Efficiency 1 4

TLP Challenges

Example Code |
e

A sequential application runs as a single thread

Kernel Function:

void kern (int start, int end) {
int i;
for(i=start; i<=end; ++i) {
Ali]l = A[i] * A[i] + 5;
}
}

Example Code |
e

A sequential application runs as a single thread

Kernel Function: Memory
void kern (int start, int end) { A
int i; 1 n
for(i=start; i<=end; ++i) { 7\
Ali]l = A[i] * A[i] + 5;
}
} NS

[Processo%

Example Code |
e

A sequential application runs as a single thread

Kernel Function: Memory
void kern (int start, int end) { A
int i; 1 n
for(i=start; i<=end; ++i) { AN
Afi] = AJi] * A[i] + 5;
}
} NS
=P Processor
Single Thread ,l '{ }
main() { I'
<

kern (1, n);

Example Code |
e

Two threads operating on separate partitions

Kernel Function: Memory
void kern (int start, int end) { A
int i; 1 n
for(i=start; i<=end; ++i) { 7\ AN
Ali]l = A[i] * A[i] + 5;
}

}

NS NS
[Processor} [Processor}

How to run the kernel on two processors?

Example Code |
e

Two threads operating on separate partitions

Kernel Function: Memory
void kern (int start, int end) { A
int i; 1 n
for(i=start; i<=end; ++i) { AN N
Afi] = A[i] * A[i] + 5;
}
} NS NS
Processor Processor
Thread 0 ,V[} [}
main() { " ’/‘
Y 4 Thread 1

kern (1, n/2); =
kern (n/2+1, n);

Performance of Parallel Processing

Recall: Amdahl’s law for theoretical speedup

O Overall speedup is limited to the fraction of the
program that can be executed in parallel

1
speedup = PR £ sequential fraction
n

Speedup vs. Sequential Fraction

10 10x

8
5x
~2X
e ~1x

0] 50 100 150

Number of Processors

Speedup

O N N O

10% 20% 40% 60% 90%

Example Code I
-

A single location is updated every time

Kernel Function: Memory
void kern (int start, int end) { A
inf i; 1 n
for(i=start; i<=end; ++i) { AN
sum = sum + A[i];
}
} N/
=P Processor
Thread 0 ,’
main() { I'
v 4

kern (1, n);

Example Code I
-

A single location is updated every time

Kernel Function: Memory
void kern (int start, int end) { A
inf i; 1 n
for(i=start; i<=end; ++i) { AN
sum = sum + A[i]; sum
}
} N/
=P Processor
Thread 0 ,’
main() { I'
v 4

kern (1, n); -

Example Code I

Two threads operating on separate partitions

Kernel Function:
void kern (int start, int end) {
int i;
for(i=start; i<=end; ++i) {
sum = sum + A[i];

}
}

Thread 0

main() {

I.<.e:rn (1, n/2);

Memory
A
1 n
sum
'{Processor} [Processor}
! 4
{ L
,’ Thread 1 I

kern (n/2+1, n);

