
DATA/THREAD LEVEL PARALLELISM

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ Announcement
¤ Tonight: Homework 5 is due
¤ Reminder: we will drop one of your HW with the least

grade

¨ This lecture
¤ Data level parallelism

n Graphics processing unit

¤ Thread level parallelism

Flynn’s Taxonomy

¨ Data vs. instruction streams
Instruction Stream

D
at

a
St

re
am

Flynn’s Taxonomy

¨ Data vs. instruction streams

Single

Single

Single-Instruction,
Single Data (SISD)

uniprocessors

Instruction Stream

D
at

a
St

re
am

Flynn’s Taxonomy

¨ Data vs. instruction streams

Single

Single

Single-Instruction,
Single Data (SISD)

uniprocessors

Multiple
Single-Instruction,

Multiple Data (SIMD)
vector processors

Instruction Stream

D
at

a
St

re
am

Flynn’s Taxonomy

¨ Data vs. instruction streams

Single

Single

Single-Instruction,
Single Data (SISD)

uniprocessors

Multiple

Multiple-Instruction,
Single Data (MISD)

systolic arrays

Multiple
Single-Instruction,

Multiple Data (SIMD)
vector processors

Multiple-Instruction,
Multiple Data

(MIMD)
multicores

Instruction Stream

D
at

a
St

re
am

Graphics Processing Unit

¨ Initially developed as graphics accelerators
¤ one of the densest compute engines available now

¨ Many efforts to run non-graphics workloads on GPUs
¤ general-purpose GPUs (GPGPUs)

¨ C/C++ based programming platforms
¤ CUDA from NVidia and OpenCL from an industry consortium

¨ A heterogeneous system
¤ a regular host CPU
¤ a GPU that handles CUDA (may be on the same CPU chip)

Graphics Processing Unit

¨ Simple in-order pipelines that rely on thread-level
parallelism to hide long latencies

¨ Many registers (~1K) per in-order pipeline (lane) to
support many active warps

ALUALU

ALUALU
Control

Cache

DRAM DRAM

Why GPU Computing?

Source: NVIDIA

The GPU Architecture

¨ SIMT – single instruction, multiple threads
¤ GPU has many SIMT cores

¨ Application à many thread blocks (1 per SIMT core)
¨ Thread block à many warps (1 warp per SIMT core)
¨ Warp à many in-order pipelines (SIMD lanes)

GPU Computing

¨ GPU as an accelerator in scientific applications

GPU Computing

¨ Low latency or high throughput?

GPU Computing

¨ Low latency or high throughput

CUDA Programming Model

¨ Step 1: substitute library calls with equivalent CUDA
library calls
¤ saxpy (…) à cublasSaxpy (…)

n single precision alpha x plus y (z = αx + y)

¨ Step 2: manage data locality
¤ cudaMalloc(), cudaMemcpy(), etc.

¨ Step 3: transfer data between CPU and GPU
¤ get and set functions

¨ rebuild and link the CUDA-accelerated library
¤ nvcc myobj.o –l cublas

Example: SAXPY Code

int N = 1 << 20;

// Perform SAXPY on 1M elements: y[]=a*x[]+y[]
saxpy(N, 2.0, x, 1, y, 1);

Example: CUDA Lib Calls

int N = 1 << 20;

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

Example: Initialize CUDA Lib

int N = 1 << 20;

cublasInit();

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasShutdown();

Example: Allocate Memory

int N = 1 << 20;

cublasInit();
cublasAlloc(N, sizeof(float), (void**)&d_x);
cublasAlloc(N, sizeof(float), (void*)&d_y);

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasFree(d_x);
cublasFree(d_y);
cublasShutdown();

Example: Transfer Data

int N = 1 << 20;

cublasInit();
cublasAlloc(N, sizeof(float), (void**)&d_x);
cublasAlloc(N, sizeof(float), (void*)&d_y);

cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);

cublasFree(d_x);
cublasFree(d_y);
cublasShutdown();

Compiling CUDA

¨ Call nvcc
¨ Parallel Threads eXecution

(PTX)
¤ Virtual machine and ISA

¨ Two stage
¤ 1. PTX
¤ 2. device-specific binary

object

PTX to Target
Compiler

NVCC

C/C++ CUDA
Application

CPU Code

PTX Code

G80 … GPU

Target code

Memory Hierarchy

¨ Throughput-oriented main memory
¤ Graphics DDR (GDDR)

n Wide channels: 256 bit
n Lower clock rate than DDR

¤ 1.5MB shared L2
¤ 48KB read-only data cache

n Compiler controlled

¤ Wide buses

DRAM

L2 cache

Shared
memory

L1 cache
Read only
data cache

Thread

Thread Level Parallelism

Flynn’s Taxonomy

¨ Forms of computer architectures

Single

Single

Single-Instruction,
Single Data (SISD)

uniprocessors

Multiple

Multiple-Instruction,
Single Data (MISD)

systolic arrays

Multiple
Single-Instruction,

Multiple Data (SIMD)
vector processors

Multiple-Instruction,
Multiple Data

(MIMD)
multiprocessors

Instruction Stream

D
at

a
St

re
am

Basics of Threads

¨ Thread is a single sequential flow of control within a
program including instructions and state
¤ Register state is called thread context

¨ A program may be single- or multi-threaded
¤ Single-threaded program can handle one task at any

time

¨ Multitasking is performed by modern operating
systems to load the context of a new thread while
the old thread’s context is written back to memory

Thread Level Parallelism (TLP)

¨ Users prefer to execute multiple applications
¤ Piping applications in Linux

n gunzip -c foo.gz | grep bar | perl some-script.pl

¤ Your favorite applications while working in office
n Music player, web browser, terminal, etc.

¨ Many applications are amenable to parallelism
¤ Explicitly multi-threaded programs

n Pthreaded applications

¤ Parallel languages and libraries
n Java, C#, OpenMP

