
DATA LEVEL PARALLELISM

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah



Overview

¨ Announcement
¤ Homework 5: due on Nov. 20th

¨ This lecture
¤ Data level parallelism



Overview

¨ ILP: instruction level parallelism
¤ Out of order execution (all in hardware)
¤ IPC hardly achieves more than 2

¨ Other forms of parallelism
¤ DLP: data level parallelism

n Vector processors, SIMD, and GPUs

¤ TLP: thread level parallelism
n Multiprocessors, and hardware multithreading

¤ RLP: request level parallelism
n Datacenters



Data Level Parallelism (DLP)



Data Level Parallelism

¨ Due to executing the same code on a large number 
of objects
¤ Common in scientific computing

¨ DLP architectures
¤ Vector processors—e.g., Cray machines
¤ SIMD extensions—e.g., Intel MMX
¤ Graphics processing unit—e.g., NVIDIA

¨ Improve throughput rather than latency
¤ Not good for non-parallel workloads



Vector Processing

¨ Scalar vs. vector processor

for(i=0; i<1000; ++i) {
B[i] = A[i] + x;

}
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Vector Processor

¨ A scalar processor—e.g., MIPS
¤ Scalar register file
¤ Scalar functional units

¨ Vector register file
¤ 2D register array
¤ Each register is an array of registers
¤ The number of elements per register determines the max 

vector length
¨ Vector functional units

¤ Single opcode activates multiple units
¤ Integer, floating point, load and stores



Basic Vector Processor Architecture



Parallel vs. Pipeline Units



Vector Instruction Set Architecture

¨ Single instruction defines multiple operations
¤ Lower instruction fetch/decode/issue cost

¨ Operations are executed in parallel
¤ Naturally no dependency among data elements
¤ Simple hardware

¨ Predictable memory access pattern
¤ Improve performance via prefetching
¤ Simple memory scheduling policy
¤ Multi banking may be used for improving bandwidth



Vector Operation Length

¨ Fixed in hardware
¤ Common in narrow SIMD
¤ Not efficient for wide SIMD

¨ Variable length
¤ Determined by a vector length register (VLR)
¤ MVL is the maximum VL
¤ How to process vectors wider than MVL?



Conditional Execution

¨ Question: how to handle 
branches?

¨ Solution: by predication
¤ Use masks, flag vectors with 

single-bit elements
¤ Determine the flag values 

based on vector compare
¤ Use flag registers as control 

mask for the next vector 
operations

for(i=0; i<1000; ++i) {
if(A[i] !=B[i])

A[i] -= B[i];
}

vld V1, Ra
vld V2, Rb
vcmp.neq.vv M0, V1, V2 
vsub.vv V3, V2, V1, M0
vst V3, Ra



Branches in Scalar Processors

for (i =0; i < 8; ++i) {

if (inp[i] > 0) {

inp

ALU

y = inp[i] * inp[i];
y = y + 2 * inp[i];
out[i] = y + 3;

} else {

y = 4 * inp[i];
out[i] = y + 1;

}

}
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Branches in Scalar Processors
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Branches in Vector Processors
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Graphics Processing Unit (GPU)



Graphics Processing Unit

¨ Initially developed as graphics accelerator
¤ It receives geometry information from the CPU as an 

input and provides a picture as an output
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Host Interface

¨ The host interface is the communication bridge 
between the CPU and the GPU

¨ It receives commands from the CPU and also 
pulls geometry information from system 
memory

¨ It outputs a stream of vertices in object space 
with all their associated information



Vertex Processing

¨ The vertex processing stage receives vertices 
from the host interface in object space and 
outputs them in screen space

¨ This may be a simple linear transformation, or 
a complex operation involving morphing 
effects



Pixel Processing

¨ Rasterize triangles to pixels
¨ Each fragment provided by triangle setup is fed 

into fragment processing as a set of attributes 
(position, normal, texcoord etc), which are used to 
compute the final color for this pixel

¨ The computations taking place here include texture 
mapping and math operations



Programming GPUs

¨ The programmer can write programs that are 
executed for every vertex as well as for every 
fragment

¨ This allows fully customizable geometry and 
shading effects that go well beyond the 
generic look and feel of older 3D applications
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Memory Interface

¨ Fragment colors provided by the previous 
stage are written to the framebuffer

¨ Used to be the biggest bottleneck before 
fragment processing took over

¨ Before the final write occurs, some fragments 
are rejected by the zbuffer, stencil and alpha 
tests

¨ On modern GPUs, z and color are compressed 
to reduce framebuffer bandwidth (but not size)



Z-Buffer

¨ Example of 3 objects



Graphics Processing Unit

¨ Initially developed as graphics accelerators
¤ one of the densest compute engines available now

¨ Many efforts to run non-graphics workloads on GPUs
¤ general-purpose GPUs (GPGPUs)

¨ C/C++ based programming platforms
¤ CUDA from NVidia and OpenCL from an industry consortium

¨ A heterogeneous system
¤ a regular host CPU
¤ a GPU that handles CUDA (may be on the same CPU chip)



Graphics Processing Unit

¨ Simple in-order pipelines that rely on thread-level 
parallelism to hide long latencies

¨ Many registers (~1K) per in-order pipeline (lane) to 
support many active warps

ALUALU

ALUALU
Control

Cache

DRAM DRAM



Why GPU Computing?

Source: NVIDIA



The GPU Architecture

¨ SIMT – single instruction, multiple threads
¤ GPU has many SIMT cores

¨ Application à many thread blocks (1 per SIMT core)
¨ Thread block à many warps (1 warp per SIMT core)
¨ Warp à many in-order pipelines (SIMD lanes)


