
DATA LEVEL PARALLELISM

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah



Overview

¨ Announcement
¤ Homework 5: due on Nov. 20th

¨ This lecture
¤ Data level parallelism



Overview

¨ ILP: instruction level parallelism
¤ Out of order execution (all in hardware)
¤ IPC hardly achieves more than 2

¨ Other forms of parallelism
¤ DLP: data level parallelism

n Vector processors, SIMD, and GPUs

¤ TLP: thread level parallelism
n Multiprocessors, and hardware multithreading

¤ RLP: request level parallelism
n Datacenters



Data Level Parallelism (DLP)



Data Level Parallelism

¨ Due to executing the same code on a large number 
of objects
¤ Common in scientific computing

¨ DLP architectures
¤ Vector processors—e.g., Cray machines
¤ SIMD extensions—e.g., Intel MMX
¤ Graphics processing unit—e.g., NVIDIA

¨ Improve throughput rather than latency
¤ Not good for non-parallel workloads



Vector Processing

¨ Scalar vs. vector processor

for(i=0; i<1000; ++i) {
B[i] = A[i] + x;

}

…A :

…B :



Vector Processing

¨ Scalar vs. vector processor

for(i=0; i<1000; ++i) {
B[i] = A[i] + x;

}

…A :

…B :

add r3, r2, r1

+

x



Vector Processing

¨ Scalar vs. vector processor

for(i=0; i<1000; ++i) {
B[i] = A[i] + x;

}

…A :

…B :

vadd v3, v2, v1}

+

x

+

x

+

x

+

x

+

x

+

x

+

x

+

x

+

x

+

x

+

x



Vector Processor

¨ A scalar processor—e.g., MIPS
¤ Scalar register file
¤ Scalar functional units

¨ Vector register file
¤ 2D register array
¤ Each register is an array of registers
¤ The number of elements per register determines the max 

vector length
¨ Vector functional units

¤ Single opcode activates multiple units
¤ Integer, floating point, load and stores



Basic Vector Processor Architecture



Parallel vs. Pipeline Units



Vector Instruction Set Architecture

¨ Single instruction defines multiple operations
¤ Lower instruction fetch/decode/issue cost

¨ Operations are executed in parallel
¤ Naturally no dependency among data elements
¤ Simple hardware

¨ Predictable memory access pattern
¤ Improve performance via prefetching
¤ Simple memory scheduling policy
¤ Multi banking may be used for improving bandwidth



Vector Operation Length

¨ Fixed in hardware
¤ Common in narrow SIMD
¤ Not efficient for wide SIMD

¨ Variable length
¤ Determined by a vector length register (VLR)
¤ MVL is the maximum VL
¤ How to process vectors wider than MVL?



Conditional Execution

¨ Question: how to handle 
branches?

¨ Solution: by predication
¤ Use masks, flag vectors with 

single-bit elements
¤ Determine the flag values 

based on vector compare
¤ Use flag registers as control 

mask for the next vector 
operations

for(i=0; i<1000; ++i) {
if(A[i] !=B[i])

A[i] -= B[i];
}

vld V1, Ra
vld V2, Rb
vcmp.neq.vv M0, V1, V2 
vsub.vv V3, V2, V1, M0
vst V3, Ra



Branches in Scalar Processors

for (i =0; i < 8; ++i) {

if (inp[i] > 0) {

inp

ALU

y = inp[i] * inp[i];
y = y + 2 * inp[i];
out[i] = y + 3;

} else {

y = 4 * inp[i];
out[i] = y + 1;

}

}



Branches in Scalar Processors

for (i =0; i < 8; ++i) {

if (inp[i] > 0) {

inp

ALU

y = inp[i] * inp[i];
y = y + 2 * inp[i];
out[i] = y + 3;

} else {

y = 4 * inp[i];
out[i] = y + 1;

}

}

out[0]



Branches in Scalar Processors

for (i =0; i < 8; ++i) {

if (inp[i] > 0) {

inp

ALU

y = inp[i] * inp[i];
y = y + 2 * inp[i];
out[i] = y + 3;

} else {

y = 4 * inp[i];
out[i] = y + 1;

}

}

out[0]

…
out[1]



Branches in Vector Processors

if (inp[i] > 0) {

inp

ALU

y = inp[i] * inp[i];
y = y + 2 * inp[i];
out[i] = y + 3;

} else {

y = 4 * inp[i];
out[i] = y + 1;

}



Branches in Vector Processors

if (inp[i] > 0) {

inp

ALU

y = inp[i] * inp[i];
y = y + 2 * inp[i];
out[i] = y + 3;

} else {

y = 4 * inp[i];
out[i] = y + 1;

}

T T T T



Branches in Vector Processors

if (inp[i] > 0) {

inp

ALU

y = inp[i] * inp[i];
y = y + 2 * inp[i];
out[i] = y + 3;

} else {

y = 4 * inp[i];
out[i] = y + 1;

}

T T T T

T T T T

out



Graphics Processing Unit (GPU)



Graphics Processing Unit

¨ Initially developed as graphics accelerator
¤ It receives geometry information from the CPU as an 

input and provides a picture as an output

Graphics Processing Unit 
(GPU)



Graphics Processing Unit

¨ Initially developed as graphics accelerator
¤ It receives geometry information from the CPU as an 

input and provides a picture as an output

Graphics Processing Unit 
(GPU)

host
interface

memory
interface

Vertex 
Processing

Triangle 
Setup

Pixel 
Processing



Host Interface

¨ The host interface is the communication bridge 
between the CPU and the GPU

¨ It receives commands from the CPU and also 
pulls geometry information from system 
memory

¨ It outputs a stream of vertices in object space 
with all their associated information



Vertex Processing

¨ The vertex processing stage receives vertices 
from the host interface in object space and 
outputs them in screen space

¨ This may be a simple linear transformation, or 
a complex operation involving morphing 
effects



Pixel Processing

¨ Rasterize triangles to pixels
¨ Each fragment provided by triangle setup is fed 

into fragment processing as a set of attributes 
(position, normal, texcoord etc), which are used to 
compute the final color for this pixel

¨ The computations taking place here include texture 
mapping and math operations



Programming GPUs

¨ The programmer can write programs that are 
executed for every vertex as well as for every 
fragment

¨ This allows fully customizable geometry and 
shading effects that go well beyond the 
generic look and feel of older 3D applications



Programming GPUs

¨ The programmer can write programs that are 
executed for every vertex as well as for every 
fragment

¨ This allows fully customizable geometry and 
shading effects that go well beyond the 
generic look and feel of older 3D applications

host
interface

memory
interface

Vertex 
Processing

Triangle 
Setup

Pixel 
Processing



Memory Interface

¨ Fragment colors provided by the previous 
stage are written to the framebuffer

¨ Used to be the biggest bottleneck before 
fragment processing took over

¨ Before the final write occurs, some fragments 
are rejected by the zbuffer, stencil and alpha 
tests

¨ On modern GPUs, z and color are compressed 
to reduce framebuffer bandwidth (but not size)



Z-Buffer

¨ Example of 3 objects



Graphics Processing Unit

¨ Initially developed as graphics accelerators
¤ one of the densest compute engines available now

¨ Many efforts to run non-graphics workloads on GPUs
¤ general-purpose GPUs (GPGPUs)

¨ C/C++ based programming platforms
¤ CUDA from NVidia and OpenCL from an industry consortium

¨ A heterogeneous system
¤ a regular host CPU
¤ a GPU that handles CUDA (may be on the same CPU chip)



Graphics Processing Unit

¨ Simple in-order pipelines that rely on thread-level 
parallelism to hide long latencies

¨ Many registers (~1K) per in-order pipeline (lane) to 
support many active warps

ALUALU

ALUALU
Control

Cache

DRAM DRAM



Why GPU Computing?

Source: NVIDIA



The GPU Architecture

¨ SIMT – single instruction, multiple threads
¤ GPU has many SIMT cores

¨ Application à many thread blocks (1 per SIMT core)
¨ Thread block à many warps (1 warp per SIMT core)
¨ Warp à many in-order pipelines (SIMD lanes)


