DRAM CONTROLLER

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

THE

OF UTAH

UNIVERSITY CS/ECE 6810: Computer Architecture

Announcement

Homework 5 will be released on Nov. 13th

This lecture

- DRAM control
- DRAM timing
- DRAM hierarchy
 - Channel, bank

Recall: DRAM Timing Example

Improving Performance

DRAM Channels

Memory channels provide fully parallel accesses
 Separate data, control, and address buses

Memory channels provide fully parallel accesses
 Separate data, control, and address buses

Memory channels provide fully parallel accesses
 Separate data, control, and address buses

Memory channels provide fully parallel accesses

Separate data, control, and address buses

Improving Performance

DRAM Ranks

DRAM Organization

- DRAM channels are independently accessed through dedicated data, address, and command buses
 - Physically broken down into DIMMs (dual in-line memory modules)
 - Logically divided into ranks, which are a collection of DRAM chips responding to the same memory request

Memory Controller

- Memory controller connects CPU and DRAM
- Receives requests after cache misses in LLC
 Possibly originating from multiple cores
- Complicated piece of hardware, handles:
 - DRAM refresh management
 - Command scheduling
 - Row-buffer management policies
 - Address mapping schemes

DRAM Control Tasks

Refresh management

Periodically replenish the DRAM cells (burst vs. distributed)

Address mapping

Distribute the requests to destination banks (load balancing)

Request scheduling

Generate a sequence of commands for memory requests

Reduce overheads by eliminating unnecessary commands

Power management

Keep the power consumption under a cap

Error detection/correction

Detect and recover corrupted data

Address Mapping

□ A memory request

Type Address Data

Address is used to find the location in memory

Channel, rank, bank, row, and column IDs

Example physical address format

Row ID	Channel ID	Rank ID	Bank ID	Column ID
--------	------------	---------	---------	-----------

A 4GB channel, 2 ranks, 4 banks/rank, 8KB page

Address Mapping

A memory request

Type Address Data

Address is used to find the location in memory

Channel, rank, bank, row, and column IDs

Example physical address format

Row ID	Channel ID	Rank ID	Bank ID	Column ID
16	0	1	2	13

A 4GB channel, 2 ranks, 4 banks/rank, 8KB page

Find the total number of commands using the following address mapping scheme

Find the total number of commands using the following address mapping scheme

Find the total number of commands using the following address mapping scheme

Find the total number of commands using the following address mapping scheme

