
CACHE OPTIMIZATION

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah



Overview

¨ Announcement
¤ Homework 4 will be released on Oct. 30th

¨ This lecture
¤ Cache replacement policies
¤ Cache write policies

¨ Reducing miss penalty



Cache Replacement Policies

¨ Which block to replace on a miss?
¤ Only one candidate in direct-mapped cache
¤ Multiple candidates in set/fully associative cache



Cache Replacement Policies

¨ Which block to replace on a miss?
¤ Only one candidate in direct-mapped cache
¤ Multiple candidates in set/fully associative cache

¨ Ideal replacement (Belady’s algorithm)

-- --

Cache Set

A B C B B B C A

Requested Blocks



Cache Replacement Policies

¨ Which block to replace on a miss?
¤ Only one candidate in direct-mapped cache
¤ Multiple candidates in set/fully associative cache

¨ Ideal replacement (Belady’s algorithm)
¤ Replace the block accessed farthest in the future

-- --

Cache Set

A B C B B B C A

Requested Blocks

A B



Cache Replacement Policies

¨ Which block to replace on a miss?
¤ Only one candidate in direct-mapped cache
¤ Multiple candidates in set/fully associative cache

¨ Ideal replacement (Belady’s algorithm)
¤ Replace the block accessed farthest in the future

¨ Least recently used (LRU)

-- --

Cache Set

A B C B B B C A

Requested Blocks



Cache Replacement Policies

¨ Which block to replace on a miss?
¤ Only one candidate in direct-mapped cache
¤ Multiple candidates in set/fully associative cache

¨ Ideal replacement (Belady’s algorithm)
¤ Replace the block accessed farthest in the future

¨ Least recently used (LRU)
¤ Replace the block accessed farthest in the past

-- --

Cache Set

A B C B B B C A

Requested Blocks

A B



Cache Replacement Policies

¨ Which block to replace on a miss?
¤ Only one candidate in direct-mapped cache
¤ Multiple candidates in set/fully associative cache

¨ Ideal replacement (Belady’s algorithm)
¤ Replace the block accessed farthest in the future

¨ Least recently used (LRU)
¤ Replace the block accessed farthest in the past

¨ Most recently used (MRU)

-- --

Cache Set

A B C B B B C A

Requested Blocks



Cache Replacement Policies

¨ Which block to replace on a miss?
¤ Only one candidate in direct-mapped cache
¤ Multiple candidates in set/fully associative cache

¨ Ideal replacement (Belady’s algorithm)
¤ Replace the block accessed farthest in the future

¨ Least recently used (LRU)
¤ Replace the block accessed farthest in the past

¨ Most recently used (MRU)
¤ Replace the block accessed nearest in the past

-- --

Cache Set

A B C B B B C A

Requested Blocks

A B



Cache Replacement Policies

¨ Which block to replace on a miss?
¤ Only one candidate in direct-mapped cache
¤ Multiple candidates in set/fully associative cache

¨ Ideal replacement (Belady’s algorithm)
¤ Replace the block accessed farthest in the future

¨ Least recently used (LRU)
¤ Replace the block accessed farthest in the past

¨ Most recently used (MRU)
¤ Replace the block accessed nearest in the past

¨ Random replacement
¤ hardware randomly selects a cache block to replace



Random vs. LRU

¨ 2-Random: choose two cache elements at random, 
and evict the least-recently-used one.

Source: https://danluu.com/2choices-eviction/



Example Problem

¨ Blocks A, B, and C are mapped to a single set with 
only two block storages; find the miss rates for LRU 
and MRU policies.

¨ 1. A, B, C, A, B, C, A, B, C

¨ 2. A, A, B, B, C, C, A, B, C



Example Problem

¨ Blocks A, B, and C are mapped to a single set with 
only two block storages; find the miss rates for LRU 
and MRU policies.

¨ 1. A, B, C, A, B, C, A, B, C
¤ LRU : 100%
¤ MRU : 66%

¨ 2. A, A, B, B, C, C, A, B, C
¤ LRU : 66%
¤ MRU : 44%



Cache Write Policies

¨ Write vs. read

hit data

v
0
1
2

…

1021
1022
1023

tag index byte

=



Cache Write Policies

¨ Write vs. read
¤ Data and tag are accessed for both read and write
¤ Only for write, data array needs to be updated

¨ Cache write policies



Cache Write Policies

¨ Write vs. read
¤ Data and tag are accessed for both read and write
¤ Only for write, data array needs to be updated

¨ Cache write policies

Write lookup hitmiss



Cache Write Policies

¨ Write vs. read
¤ Data and tag are accessed for both read and write
¤ Only for write, data array needs to be updated

¨ Cache write policies

Read lower 
level?

Write no allocate Write allocate

Write lookup hitmiss



Write (No-)Allocate

¨ Write allocate
¤ allocate a cache line for the new data, and replace 

old line
¤ just like a read miss

¨ Write no allocate
¤ do not allocate space in the cache for the data
¤ only really makes sense in systems with write buffers



Write (No-)Allocate

¨ Write allocate
¤ allocate a cache line for the new data, and replace 

old line
¤ just like a read miss

¨ Write no allocate
¤ do not allocate space in the cache for the data
¤ only really makes sense in systems with write buffers

¨ How to handle read miss after write miss?



Cache Write Policies

¨ Write vs. read
¤ Data and tag are accessed for both read and write
¤ Only for write, data array needs to be updated

¨ Cache write policies

Read lower 
level?

Write no allocate Write allocate

Write lower 
level?

Write back Write through

Write lookup hitmiss



Write back

¨ On a write access, write to cache only
¤ write cache block to memory only when replaced 

from cache
¤ dramatically decreases bus bandwidth usage
¤ keep a bit (called the dirty bit) per cache block

Core

Main Memory

Cache



Write through

¨ Write to both cache and memory (or next level)
¤ Improved miss penalty
¤ More reliable because of maintaining two copies

Core

Main Memory

Cache



Write through

¨ Write to both cache and memory (or next level)
¤ Improved miss penalty
¤ More reliable because of maintaining two copies

Core

Main Memory

CacheWrite buffer

¤ Use write buffer alongside cache
¤ works fine if

n rate of stores < 1 / DRAM write cycle
¤ otherwise

n write buffer fills up
n stall processor to allow memory to catch up



Reducing Miss Penalty

¨ Some cache misses are inevitable
¤ when they do happen, want to service as quickly as 

possible

¨ Other miss penalty reduction techniques
¤ Multilevel caches
¤ Giving read misses priority over writes
¤ Sub-block placement
¤ Critical word first



Reducing Miss Penalty

¨ Some cache misses are inevitable
¤ when they do happen, want to service as quickly as 

possible

¨ Other miss penalty reduction techniques
¤ Multilevel caches
¤ Giving read misses priority over writes
¤ Sub-block placement
¤ Critical word first



Reducing Miss Penalty

¨ Some cache misses are inevitable
¤ when they do happen, want to service as quickly as 

possible

¨ Other miss penalty reduction techniques
¤ Multilevel caches
¤ Giving read misses priority over writes
¤ Sub-block placement
¤ Critical word first



Reducing Miss Penalty

¨ Some cache misses are inevitable
¤ when they do happen, want to service as quickly as 

possible

¨ Other miss penalty reduction techniques
¤ Multilevel caches
¤ Giving read misses priority over writes
¤ Sub-block placement
¤ Critical word first



Victim Cache

¨ How to reduce conflict misses
¤ Larger cache capacity
¤ More associativity

¨ Associativity is expensive
¤ More hardware; longer hit time
¤ More energy consumption

¨ Observation
¤ Conflict misses do not occur in all sets
¤ Can we increase associativity on the fly for sets?



Victim Cache

¨ Small fully associative cache
¤ On eviction, move the victim block to victim cache

…

Last Level Cache
4-way SA Cache

Data



Victim Cache

¨ Small fully associative cache
¤ On eviction, move the victim block to victim cache

…

Last Level Cache
4-way SA Cache

…

Victim Cache
Small FA cache

Data



Cache Inclusion

¨ How to reduce the number of accesses that miss in 
all cache levels?
¤ Should a block be allocated in all levels?

n Yes: inclusive cache
n No: non-inclusive or exclusive

¤ Non-inclusive: only allocated in L1

¨ Modern processors
¤ L3: inclusive of L1 and L2
¤ L2: non-inclusive of L1 (large victim cache)


