MEMORY HIERARCHY DESIGN

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , :
U S A CS/ECE 6810: Computer Architecture

Overview
"

Announcement

O Homework 4 will be released on Oct. 30st

This lecture
O Memory hierarchy
O Memory technologies

O Principle of locality

Cache concepts

Memory Hierarchy

“Ideally one would desire an indefinitely large memory capacity
such that any particular [...] word would be immediately
available [...] We are [...] forced to recognize the possibility of
constructing a hierarchy of memories, each of which has greater
capacity than the preceding but which is less quickly accessible.”
-- Burks, Goldstine, and von Neumann, 1946

/ Level T \
Greater capacity
/ Level 2 \ Less quickly accessible

/o level3 \

The Memory Wall

0000
Processor-memory performance gap increased over
50% per year

O Processor performance historically improved ~60% per
year

O Main memory access time improves ~5% per year

10000

1000

Processor

100 -

Performance

10 -

1 . T T T T 1
1985 1990 1995 2000 2005 2010

Modern Memory Hierarchy
e

Trade-off among memory speed, capacity, and cost

small, fast, expensive Register

Cache I—_I

. big, slow, inexpensive

SSD

Disk

Memory Technology
S —

Random access memory (RAM) technology

O access time same for all locations (not so true anymore)

O Static RAM (SRAM)

typically used for caches

6T /bit; fast but — low density, high power, expensive

O Dynamic RAM (DRAM)

typically used for main memory

1T/bit; inexpensive, high density, low power — but slow

RAM Cells

e
6T SRAM cell bifline bitline

O internal feedback wordline

maintains data while

power on L

RY

1T-1C DRAM cell

O needs refresh regularly to

bitline

wordline

_IZ'___‘_
T

preserve data

Processor Cache
-

Occupies a large fraction of die area in modern
microprocessors

3-3.5 GHz
~$1000 (2014)

Source: Intel Core i7

Processor Cache
-

Occupies a large fraction of die area in modern
microprocessors

R eredeeyy = P RP PPy | =
» - By =it
T, SRS =

3-3.5 GHz
~$1000 (2014)

20MB of cache

AL

" *Memory:Controller~

)
|

Source: Intel Core i7

Cache Hierarchy

Example three-level cache organization

LT ™
| —
32 KB =
1 cycle L3
Zaoke
cycies 30 cycles
Off-chip
8 GB Memory

~300 cycles

Cache Hierarchy

Example three-level cache organization

L1 ™
N —>
32 KB L2
1 cycle L3
Application
Ffp 256 KB 4 MB
inst. data 10 cycles 30 cycles
Off-chip
8 GB Memory

~300

Cache Hierarchy

Example three-level cache organization

LT >
32 KB L2 —
1 cycle L3
Application 256 KB
inst. data 10 cycles 4 MB
30 cycles
1. Where to put the application?
2. Who decides?]
a. software (scratchpad) Off-chip
8 GB Memory

b. hardware (caches)

~300 cyc/es

Principle of Locality
-

Memory references exhibit localized accesses

Types of locality

O spatial: probability of access to A+90 at time t+¢
highest when 050

O temporal: probability of accessing A+¢ at time ++0
highest when 00

for (i=0; i<1000; ++i) {
sum = sum + alij;
/

A T
spatial temporal

Key idea: store local data in fast cache levels

Principle of Locality
-

Memory references exhibit localized accesses

Types of locality

O spatial: probability of access to A+90 at time t+¢
highest when 050

O temporal: probability of accessing A+¢ at time ++0
highest when 00

for (i=0; i<1000; ++i) {
sum = sum + alij;
] £t~ 1t

A]) t] temporal spatial
Spatial temporal

Key idea: store local data in fast cache levels

Cache Terminology
S —

Block (cache line): unit of data access
Hit: accessed data found at current level

O hit rate: fraction of accesses that finds the data

O hit time: time to access data on a hit

Miss: accessed data NOT found at current level
O miss rate: 1 — hit rate

O miss penalty: time to get block from lower level

hit time << miss penalty

Cache Performance

00000000
Average Memory Access Time (AMAT)

AMAT = ryty 41, (6,+1,)
' I h

r, =1 —r
Miss r, th+tp h m

e AMAT = 1, + 1,1,

problem: hit rate is 90%; hit time is 2 cycles;

and accessing the lower level takes 200 cycles;

find the average memory access time?

Cache Performance
00000000
Average Memory Access Time (AMAT)
AMAT = 17, (1,+1,)
Hit r t,

r, =1 —r
Miss r, th+tp h m

e AMAT = 1, + 1,1,

problem: hit rate is 90%; hit time is 2 cycles;

and accessing the lower level takes 200 cycles;

find the average memory access time?

AMAT = 2 + 0.1x200 = 22 cycles

Example Problem

Assume that the miss rate for instructions is 5%; the
miss rate for data is 8%; the data references per
instruction is 40%,; and the miss penalty is 20 cycles;
find performance relative to perfect cache with no
misses

Example Problem
-

Assume that the miss rate for instructions is 5%; the
miss rate for data is 8%; the data references per
instruction is 40%,; and the miss penalty is 20 cycles;
find performance relative to perfect cache with no

misses

O misses/instruction = 0.05 + 0.08 x 0.4 = 0.082
O Assuming hit time =1

AMAT =1 + 0.082x20 = 2.64

Relative performance = 1/2.64

Summary: Cache Performance

Bridging the processor-memory performance gap

@ Main memory access time: 300 cycles

Summary: Cache Performance

Bridging the processor-memory performance gap

@ Main memory access time: 300 cycles

Two level cache
= L1: 2 cycles hit time; 60% hit rate
= L2: 20 cycles hit time; 70% hit rate

What is the average mem access time?

Level-1

Level-2

Summary: Cache Performance

Bridging the processor-memory performance gap

@ Main memory access time: 300 cycles

Two level cache

Level-1 " L1: 2 cycles hit time; 60% hit rate
= | 2: 20 cycles hit time; 70% hit rate
—_— What is the average mem access time?
AMAT = t,, T r,; tp]

g = Uy T Vi 1))
AMAT = 46

Cache Addressing

Instead of specifying cache address we specify
main memory address

Simplest: direct-mapped cache Memory

0000
0001
0010
0011
0100
0101
0110
0111

1000
Cache 1001
1010
1011
1100
1101
1110
1111

Cache Addressing

Instead of specifying cache address we specify

main memory address

Simplest: direct-mapped cache

Note: each memory address maps to

a single cache location determined by

modulo hashing

Cache

00
01
10
11

Memory

0000
0001
0010
0011
0100

0101
0110
0111
1000

1001
1010
1011
1100
1101
1110
1111

Cache Addressing

Instead of specifying cache address we specify

main memory address

Simplest: direct-mapped cache

Note: each memory address maps to
a single cache location determined by
modulo hashing

How to exactly specify
which blocks are in the
cache?

Memory

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Direct-Mapped Lookup

tag index byte
Byte offset: to select —— |
V
the requested byte o[
Tag: to maintain the 2|
address i

Valid flag (v):
whether content is

1021 ({]

i 1022
meaningful el

Data and tag are

always accessed

hit

Example Problem
-

Find the size of tag, index, and offset bits for an
8MB, direct-mapped L3 cache with 64B cache
blocks. Assume that the processor can address up to
4GB of main memory.

Example Problem
-

Find the size of tag, index, and offset bits for an
8MB, direct-mapped L3 cache with 64B cache
blocks. Assume that the processor can address up to
4GB of main memory.

4GB = 232 B = address bits = 32

64B = 2° B = byte offset bits = 6

8MB/64B = 2!7 = index bits = 17
tag bits =32-6-17=9

Cache Optimizations
e

How to improve cache performance?
AMAT =t, + 1, t,

Reduce hit time (t,)
Improve hit rate (1 -r_)

Reduce miss penalty (t))

Cache Optimizations
e

How to improve cache performance?

AMAT =t, + 1, t,

Reduce hit time (t,)

O Memory technology, critical access path

Improve hit rate (1 -r_)

Reduce miss penalty (t))

Cache Optimizations
e

How to improve cache performance?
AMAT =t, + 1, t,

Reduce hit time (t,)

O Memory technology, critical access path

Improve hit rate (1 -r_)

O Size, associativity, placement /replacement policies

Reduce miss penalty (t))

Cache Optimizations
e

How to improve cache performance?
AMAT = t, +r,,

Reduce hit time (t,)

p

O Memory technology, critical access path
Improve hit rate (1 -r_)
O Size, associativity, placement /replacement policies

Reduce miss penalty (t))

O Multi level caches, data prefetching

