DYNAMIC SCHEDULING

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , :
U S A CS/ECE 6810: Computer Architecture




Overview
"

Announcement
O Homework 3 will be uploaded tonight (11:59PM)

This lecture
O Recap Branch Prediction

O Dynamic scheduling
Forming data flow graph on the fly
O Register renaming

Removing false data dependence

Architectural vs. physical registers



Recall: Branch Predictors

DHT: Limited PC Based
1-bit predictor 3

o M o

BHT + DHT

.~

BHT DH"

~— BHT: Tagged
2-bit predlctor PC Based 99

o
l . How many branches
gra
2 H ow many counters

_‘
1)
0l o
ol »
3
A

........................

xxxxx




Recall: Branch Predictors

1-bit predictor

]
\
vy A / L

2-bit predictor

Local Predictor

PC
History Registers | | Predicto:
G

Tournament Predictor




Branch Prediction Summary

s
Dedicated predictor per branch

O Program counter is used for assigning predictors to
branches

Capturing correlation among branches
O Shift register is used to track history
Predicting branch direction is not enough
O Which instruction to be fetched if taken?

Storing the target instruction can eliminate fetching

O Extra hardware is required



Branch Target Buffer
-

Store a target address for each branch

PC

Target

— Target address



Branch Target Buffer
-

Store tags and target addresses for each branch

PC

\ Tag Target

— Target address

AND > Hit/miss*




Big Picture
N

Goal: exploiting more ILP by avoiding stall cycles

O Branch prediction can avoid the stall cycles in the
frontend

Reorder Buffer (ROB)

FP/integer divider




Big Picture
N

Goal: exploiting more ILP by avoiding stall cycles

O Branch prediction can avoid the stall cycles in the
frontend

More instructions are sent to the pipeline

Reorder Buffer (ROB)

FP/integer divider




Big Picture
N

Goal: exploiting more ILP by avoiding stall cycles

O Branch prediction can avoid the stall cycles in the
frontend

More instructions are sent to the pipeline

O Instruction scheduling can remove unnecessary stall
cycles in the execution/memory stage
Static scheduling

m Complex software (compiler)

® Unable to resolve all data hazards (no access to runtime details)

Dynamic scheduling

m Completely done in hardware



Dynamic Scheduling
-

Key idea: creating an instruction schedule based on
runtime information

O Hardware managed instruction reordering

Assembly code:

DIV F1,F2,F3
ADD F4, F] ’ F5 Integer unit

Reorder Buffer (ROB)

SUB Fé,F5, F7

FP/integer divider




Dynamic Scheduling
-

Key idea: creating an instruction schedule based on
runtime information

O Hardware managed instruction reordering

Assembly code:

DIV F1.F2. F3 / Long |atenCy operation

ADD F4,F1,F5 —— Dependent instruction Integer unit
SUB Fé6, F5, F7

Reorder Buffer (ROB)

FP/integer divider




Dynamic Scheduling

Key idea: creating an instruction schedule based on
runtime information

O Hardware managed instruction reordering

Assembly code:

DIV F1.F2. F3 / Long |atenCy operation

,_é??_ff_f_]_f?___' Dependent instruction Integer unit ceordor Buffer (ROH
4
[ SUB F6,F5,F7 b
N T T [ [ T _______ -
]
1
v

Independent instruction

Out-of-order execution?

FP/integer divider




Dynamic Scheduling

Key idea: creating an instruction schedule based on
runtime information

O Hardware managed instruction reordering

O Instructions are executed in data flow order

Program code

ADDI R1, RO, #1
ADDI R2, RO, #4
loop: ADD R3, R3, R2
ADDI R2, R2, #-1
BNEQ R2, R1, next
ADD R4, R4, R3
next: BNEQ R2, RO, loop



Dynamic Scheduling
-

Key idea: creating an instruction schedule based on
runtime information

O Hardware managed instruction reordering

O Instructions are executed in data flow order

Program code

log
‘ ADD R4, R4, R3

Nexe




Dynamic Scheduling
-

Key idea: creating an instruction schedule based on
runtime information

O Hardware managed instruction reordering

O Instructions are executed in data flow order

Program code

lo

0)%
‘ ADD R4, R4, R3
ext

ADD R4, R4, R3




Dynamic Scheduling
-

Key idea: creating an instruction schedule based on
runtime information

O Hardware managed instruction reordering

O Instructions are executed in data flow order

Data flow

Program code

log
‘ ADD R4, R4, R3

Nexe

ADD R4, R4, R3

(ADD R4,R4,R3 ]




Dynamic Scheduling
-

Key idea: creating an instruction schedule based on
runtime information

O Hardware managed instruction reordering

O Instructions are executed in data flow order

Data flow

Program code

log
‘ ADD R4, R4, R3

Nexe

ADD R4, R4, R3

(ADD R4,R4,R3 ]

How to form data flow graph on the fly?



Register Renaming

-0
Eliminating WAR and WAW hazards

O Change the mapping between architectural registers
and physical storage locations

DIV F1,F2,F3
ADD F4,F1,F5
SUB F5, F6, F7
ADD F4, F5, F8

Reorder Buffer (ROB)

FP/integer divider




Register Renaming

Eliminating WAR and WAW hazards

O Change the mapping between architectural registers
and physical storage locations

RAW
DIV (F1) F2, F3
ADD F4,F1)F5 | S
Integer unit Reorder Buffer (ROB)

su (F5) Fé6, F7
ADD F4,(F5) F8

FP/integer divider




Register Renaming

Eliminating WAR and WAW hazards

O Change the mapping between architectural registers
and physical storage locations

RAW

DIV , F3
Integer unit

Reorder Buffer (ROB)

FP/integer divider




Register Renaming

-0
Eliminating WAR and WAW hazards

O Change the mapping between architectural registers
and physical storage locations

Reorder Buffer (ROB)

FP/integer divider




Register Renaming

-0
Eliminating WAR and WAW hazards

O Change the mapping between architectural registers
and physical storage locations

Reorder Buffer (ROB)

DIV (FT} F2, F3
ADD F4F1}F5
sus (@) F6, F7
ADD Q2,00 F8

FP/integer divider




Register Renaming

-0
Eliminating WAR and WAW hazards

O Change the mapping between architectural registers
and physical storage locations

WAR and WAW hazards can be removed
using more registers

Reorder Buffer (ROB)

DIV {F1} F2, F3
ADD F4F1}F5
sus (@) F6, F7
ADD Q2,00 F8

FP/integer divider




Register Renaming

Eliminating WAR and WAW hazards

1. allocate a free physical location for the new register

2. find the most recently allocated location for the register

Physical
DIV F1,F2, F3 Architectural Locations

ADD F4, F1,F5 Registers P10
SUB F5, F6, F7 F1 P11
ADD F4, F5, F8 F2 B2

F3 P13
F4 / P14
F5 — P15
F6 P16
E §< P17
F8 P18

P19




Register Renaming

Eliminating WAR and WAW hazards

1. allocate a free physical location for the new register

2. find the most recently allocated location for the register

Physical
DIV F1,F2, F3 Architectural Locations

ADD F4, F1, F5 Registers P10
SUB F5, F6, F7 F1 | P11
ADD F4, F5, F8 F2 P12

F3 P13

F4 / P14

F5 » P15
DIV P12,P11,P10 Fé P16
F8 P18

P19




Register Renaming

Eliminating WAR and WAW hazards

1. allocate a free physical location for the new register

2. find the most recently allocated location for the register

Physical

DIV F1,F2, F3 Architectural Locations
ADD F4,F1,F5 Registers P10
SUB F5, F6, F7 F1 | P11
ADD F4,F5, F8 ::g ?é g};
Y

F4 —s

F5 » P15
DIV P12,P11,P10 Fé P16
ADD P14,P12,P15 F7 P17
F8 P18

P19




Register Renaming

Eliminating WAR and WAW hazards

1. allocate a free physical location for the new register

2. find the most recently allocated location for the register

Physical

DIV F1,F2, F3 Architectural Locations
ADD F4,F1,F5 Registers P10
SUB F5, F6, F7 F1 | P11
ADD F4, F5, F8 2 ?é 12
F4 P4
F5 P15
DIV P12,P11,P10 Fo P16
ADD P14,P12,P15 F7 P17
SUB P19,P17,P13 F8 P18
P19




Register Renaming

Eliminating WAR and WAW hazards

1. allocate a free physical location for the new register

2. find the most recently allocated location for the register

Physical

DIV F1,F2, F3 Architectural Locations
ADD F4, F1, F5 Registers P10
SUB F5, F6, F7 F1 P11
ADD F4, F5, F8 F2 ?é P12
F3 P13
F4 P14
F5 P15
DIV P12,P11,P10 Fo P16
ADD P14, P12, P15 F7 P17
SUB P19,P17,P13 F8 P18
ADD P18,P19,P16 P19



