BRANCH PREDICTORS

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY , :
U S A CS/ECE 6810: Computer Architecture

Overview
"

Announcements

O Homework 3 release: Sept. 25™

This lecture

O Dynamic branch prediction

O Counter based branch predictor
O Correlating branch predictor

O Global vs. local branch predictors

Big Picture: Why Branch Prediction?

Problem: performance is mainly limited by the number of
instructions fetched per second

Solution: deeper and wider frontend

Challenge: handling branch instructions

£ 2007 Elsavier, Inc. Al rights reserved.

Big Picture: How to Predict Branch@
-

Static prediction (based on direction or profile)

Always not-taken
0 Target = next PC
Always taken

0 Target = unknown

direction

target

Dynamic prediction

Special hardware using PC

Instruction

Recall: Dynamic Branch Prediction
-

Hardware unit capable of learning at runtime

O 1. Prediction logic
Direction (taken or not-taken)

Target address (where to fetch next)

O 2. Outcome validation and training

Outcome is computed regardless of prediction

O 3. Recovery from misprediction

Nullify the effect of instructions on the wrong path

Branch Prediction
O

Goal: avoiding stall cycles caused by branches

Solution: static or dynamic branch predictor

O 1. prediction

O 2. validation and training

O 3. recovery from misprediction

Performance is influenced by the frequency of

branches (b), prediction accuracy (a), and
misprediction cost (c)

Branch Prediction
O

Goal: avoiding stall cycles caused by branches

Solution: static or dynamic branch predictor

O 1. prediction

O 2. validation and training

O 3. recovery from misprediction

Performance is influenced by the frequency of

branches (b), prediction accuracy (a), and
misprediction cost (c)

OldTime CPlygq 1+ bc
New Time CPl,,, 1+ (1—a)bc

Speedup =

Problem

A pipelined processor requires 3 stall cycles to
compute the outcome of every branch before
fetching next instruction; due to perfect
forwarding /bypassing, no stall cycles are required

for data/structural hazards; every 5™ instruction is
a branch.

O Compute speedup gained by a branch predictor with
?0% accuracy

Problem

A pipelined processor requires 3 stall cycles to
compute the outcome of every branch before
fetching next instruction; due to perfect
forwarding /bypassing, no stall cycles are required

for data/structural hazards; every 5™ instruction is
a branch.

O Compute speedup gained by a branch predictor with
?0% accuracy

Speedup = (1 + 0.2%3) /(1 + 0.1X0.2%x3) = 1.5

Bimodal Branch Predictors

-0
One-bit branch predictor

O Keep track of and use the outcome of last branch
taken

not-taken w taken

not-taken

Bimodal Branch Predictors

-0
One-bit branch predictor

O Keep track of and use the outcome of last branch
taken

not-taken w taken

not-taken

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

Bimodal Branch Predictors

-0
One-bit branch predictor

O Keep track of and use the outcome of last branch
taken

not-taken w taken

not-taken
while(1) {
for(i=0; i<10; i++) { | branch-1
}
for(j=0; j<20; j++) { | branch-2
}

}

Bimodal Branch Predictors

-0
One-bit branch predictor

O Keep track of and use the outcome of last branch
taken

Shared predictor ”Ot'ta"e”wtaken
Two mispredictions per loop o——
while(1) {
for(i=0; i<10; i++) { | branch-1
lfor(j=0; j<20; j++){ branch-2

}

Bimodal Branch Predictors

-0
One-bit branch predictor

O Keep track of and use the outcome of last branch
taken

Shared predictor ”Ot'ta"e”wtaken
Two mispredictions per loop —
while(1) {
for(i=0; i<10; i++) { | branch-1
Accuracy = 26/30 = 0.86)
How to i " for(j=0; j<20; j++){ ' branch-2
ow to improve? }

}

Bimodal Branch Predictors
O

Two-bit branch predictor
O Increment if taken

O Decrement if untaken

while(1) {
for(i=0; i<10; i++) { | branch-1
}
for(j=0; j<20; j++) { | branch-2
}

}

Bimodal Branch Predictors

Two-bit branch predictor
O Increment if taken

O Decrement if untaken

not-taken

while(1) {
for(i=0; i<10; i++) { | branch-1
}
for(j=0; j<20; j++) { | branch-2
}

}

Bimodal Branch Predictors

-
taken
Two-bit branch predictor
O Increment if taken a °
O Decrement if untaken . taken .
’ taken

* One misprediction on loop jot-taken
exit

* Accuracy = 28/30 = 0.93

while(1) {
for(i=0; i<10; i++) { | branch-1
}
for(j=0; j<20; j++) { | branch-2
}

}

Bimodal Branch Predictors

Two-bit branch predictor

O Increment if taken

O Decrement if untaken

* One misprediction on loop
exit

* Accuracy = 28/30 = 0.93

* How to improve?
* 3-bit predictor?
* Problem?
* A single predictor shared
among many branches

taken

not-taken ‘ ’ taken

taken

while(1) {
for(i=0; i<10; i++) { | branch-1
}
for(j=0; j<20; j++) { | branch-2
}

}

Using Multiple Counters
-

How to assign a branch to each counter?

PC

Counters

Program code

branch-1 >

branch-2

branch-3 —

Using Multiple Counters
-

How to assign a branch to each counter?

PC
< ! Counters
Program code :
I;r.anch-l >:
;o.r.anch-2
I;I:anch-3 |

=

Using Multiple Counters
-

How to assign a branch to each counter?

PC
o Counters
Program code
branch-1 >
branch-2 1. How many branches
are in a program?
branch-3 2. How many counters]

=

are used?

Using Multiple Counters
-

How to assign a branch to each counter?

Cost = n2° bits

PC
o Counters
Program code
branch-1 >
branch-2 1. How many branches
are in a program?
branch-3 2. How many counters]

=

are used?

Using Multiple Counters
-

How to assign a branch to each counter?

O Decode History Table (DHT)
Reduced HW with aliasing

PC
:- Counters
Program code
branch-1 >_
i,}},nch-z Least significant bits are
used to select a counter
branch-3 |

=

Using Multiple Counters
-

How to assign a branch to each counter?

O Decode History Table (DHT)
Reduced HW with aliasing

PC
:- Counters
Program code
branch-1 >_
i,}},nch-z Least significant bits are
used to select a counter
branch-3 (+) Reduced hardware N

=

(—) Branch aliasing

Using Multiple Counters
-

How to assign a branch to each counter?

O Decode History Table (DHT)
Reduced HW with aliasing

Cost = n2P bits

PC
:- Counters
Program code
branch-1 >_
i,}},nch-z Least significant bits are
used to select a counter
branch-3 (+) Reduced hardware N

=

(—) Branch aliasing

Using Multiple Counters
-

How to assign a branch to each counter?

O Decode History Table (DHT)
Reduced HW with aliasing

PC
O Branch History Table (BHT) — Tags

Precisely tracking branches —

a-b |n
Most significant bits are S
c
used as tags > %
%)

hit/miss* j

Using Multiple Counters

How to assign a branch to each counter?

O Decode History Table (DHT)
Reduced HW with aliasing

PC
O Branch History Table (BHT) — Tags

Precisely tracking branches —

a-b |n
Most significant bits are S
c
used as tags > %
(+) No aliasing %)

(—) Missing entries %
hit/miss*

Using Multiple Counters

How to assign a branch to each counter?

O Decode History Table (DHT)

Cost = (a-b+n)2b bits
Reduced HW with aliasing

PC
O Branch History Table (BHT) — Tags

Precisely tracking branches —

a-b |n
Most significant bits are S
c
used as tags > .‘?D.
(+) No aliasing %)

(—) Missing entries %
hit/miss*

Using Multiple Counters
-

How to assign a branch to each counter?

O Decode History Table (DHT)
Reduced HW with aliasing PC

O Branch History Table (BHT) < BHT DHT

Precisely tracking branches _a-b In n|

O Combined BHT and DHT B
BHT is used on a hit ||
DHT is used /updated on a miss

Using Multiple Counters
-

How to assign a branch to each counter?

oD Hist Table (DHT
ecode History Table |) Cost = (a-b+2n)2° bits
Reduced HW with aliasing PC

O Branch History Table (BHT) < BHT DHT

Precisely tracking branches _a-b In n|

O Combined BHT and DHT |

BHT is used on a hit ||

DHT is used /updated on a miss

Using Multiple Counters
-

How to assign a branch to each counter?

oD Hist Table (DHT
ecode History Table |) Cost = (a-b+2n)2° bits
Reduced HW with aliasing PC

O Branch History Table (BHT) < BHT DHT
Precisely tracking branches “a-b [n n

O Combined BHT and DHT |

BHT is used on a hit ||

DHT is used /updated on a miss

DHT typically has more entries than BHT

Correlating Branch Predictor
S

Executed branches of a program stream may be

correlated
while (1) {
if(x == 0)
y =0;

if(y == 0)
x=1;

}

Correlating Branch Predictor
S

Executed branches of a program stream may be

correlated
while (1) {
if(x == 0) branch-1
y =0;

ifly == 0) branch-2
x=1;

}

Correlating Branch Predictor

Executed branches of a program stream may be

correlated

while (1) { while:
if(x == 0) branch-1 BNEQ R1T, RO, skp1
y =0; ADDI R2, RO, #0
skp1: ...
ifly == 0) branch-2 BNEQ R2, RO, skp2
x=1; ADDI R1, RO, #1

} skp2: J while

Correlating Branch Predictor
S

Executed branches of a program stream may be

correlated
. Global History Register: an r-bit shift register
while (1) { that maintains outcome history
if(x == 0) branch-1 P
y = 0; taken? ===+

ifly == 0) branch-2

x=1;

Correlating Branch Predictor
S

Executed branches of a program stream may be

correlated
. Global History Register: an r-bit shift register
while (1) { that maintains outcome history
if(x == 0) branch-1 P
y = 0; taken? ===+

ifly == 0) branch-2 |

x=1; |

} PC J A S

b

Y

=l

Correlating Branch Predictor
S

Executed branches of a program stream may be

correlated
. Global History Register: an r-bit shift register
while (1) { that maintains outcome history
if(x == 0) branch-1 P
y = 0; taken? ===+

ifly == 0) branch-2 |

x=1; |

} PC J A S

b

Cost = r+n2P*" bits — = — —

=l

Global Branch Predictor
e

GHR is merged with PC bits to choose a counter

PC
:b:

O

GHR

Shared Counters

—

Global Branch Predictor

GHR is merged with PC bits to choose a counter

PC
:b:

GHR

Shared Counters

—

Global Branch Predictor

GHR is merged with PC bits to choose a counter

PC
:b:

< .
<« »

GHR

Shared Counters

—

Cost = r+n2MAXib, 1} Kits

Local Branch Predictor

"
One GHR per branch

PC
:b:

History Registers Shared Counters

r

>3]

Local Branch Predictor

"
One GHR per branch

PC
:b:

History Registers Shared Counters

r

>3]

Cost = r2P+n?2" bits

Local Branch Predictor

One GHR per branch

PC Q

b

History Registers Predictors

r

-

>3]

Local Branch Pred

One GHR per branch

ictor

PC
:b:

History Registers

r

a

Cost = r2P+n2MAX{r b} bits

Predictors

-

>3]

Local Branch Predictor

One GHR per branch

PC @R

b

History Registers Predictors

r

-

Cost = r2P+n2MAX{r b} bits

>3]

Tournament Branch Predictor

Local predictor may work well for some
applications, while global predictor works well for
some other programs

O Include both and identify /use the best one for each
branch

Local

i Predictor

| Global | ™
| Predictor output

| Tournament

Predictor

Two bit saturating counters

Branch Prediction Summary

s
Dedicated predictor per branch

O Program counter is used for assigning predictors to
branches

Capturing correlation among branches
O Shift register is used to track history
Predicting branch direction is not enough
O Which instruction to be fetched if taken?

Storing the target instruction can eliminate fetching

O Extra hardware is required

Branch Target Buffer
-

Store tags and target addresses for each branch

PC

\ Tag Target

— Target address

Branch Target Buffer
-

Store tags and target addresses for each branch

PC

\ Tag Target

— Target address

AND > Hit/miss*

