
BRANCH PREDICTORS

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ Announcements
¤ Homework 3 release: Sept. 25th

¨ This lecture
¤ Dynamic branch prediction
¤ Counter based branch predictor
¤ Correlating branch predictor
¤ Global vs. local branch predictors

Big Picture: Why Branch Prediction?

¨ Problem: performance is mainly limited by the number of
instructions fetched per second

¨ Solution: deeper and wider frontend
¨ Challenge: handling branch instructions

Big Picture: How to Predict Branch?

¨ Static prediction (based on direction or profile)
¨ Always not-taken

¨ Target = next PC

¨ Always taken
¨ Target = unknown

¨ Dynamic prediction
¨ Special hardware using PC

Inst.
Memory

PC +

4

N
PC

In
st

ru
ct

io
n

target

clk

clk direction

Recall: Dynamic Branch Prediction

¨ Hardware unit capable of learning at runtime
¤ 1. Prediction logic

n Direction (taken or not-taken)
n Target address (where to fetch next)

¤ 2. Outcome validation and training
n Outcome is computed regardless of prediction

¤ 3. Recovery from misprediction
n Nullify the effect of instructions on the wrong path

Branch Prediction

¨ Goal: avoiding stall cycles caused by branches
¨ Solution: static or dynamic branch predictor

¤ 1. prediction
¤ 2. validation and training
¤ 3. recovery from misprediction

¨ Performance is influenced by the frequency of
branches (b), prediction accuracy (a), and
misprediction cost (c)

Branch Prediction

¨ Goal: avoiding stall cycles caused by branches
¨ Solution: static or dynamic branch predictor

¤ 1. prediction
¤ 2. validation and training
¤ 3. recovery from misprediction

¨ Performance is influenced by the frequency of
branches (b), prediction accuracy (a), and
misprediction cost (c)

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑂𝑙𝑑	𝑇𝑖𝑚𝑒
𝑁𝑒𝑤	𝑇𝑖𝑚𝑒 =

𝐶𝑃𝐼234
𝐶𝑃𝐼567

=
1 + 𝑏𝑐

1 + 1 − 𝑎 𝑏𝑐

Problem

¨ A pipelined processor requires 3 stall cycles to
compute the outcome of every branch before
fetching next instruction; due to perfect
forwarding/bypassing, no stall cycles are required
for data/structural hazards; every 5th instruction is
a branch.
¤ Compute speedup gained by a branch predictor with

90% accuracy

Problem

¨ A pipelined processor requires 3 stall cycles to
compute the outcome of every branch before
fetching next instruction; due to perfect
forwarding/bypassing, no stall cycles are required
for data/structural hazards; every 5th instruction is
a branch.
¤ Compute speedup gained by a branch predictor with

90% accuracy

Speedup = (1 + 0.2×3) / (1 + 0.1×0.2×3) = 1.5

Bimodal Branch Predictors

¨ One-bit branch predictor
¤ Keep track of and use the outcome of last branch

N T

taken

takennot-taken

not-taken

Bimodal Branch Predictors

¨ One-bit branch predictor
¤ Keep track of and use the outcome of last branch

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

N T

taken

takennot-taken

not-taken

Bimodal Branch Predictors

¨ One-bit branch predictor
¤ Keep track of and use the outcome of last branch

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

N T

taken

takennot-taken

not-taken

Bimodal Branch Predictors

¨ One-bit branch predictor
¤ Keep track of and use the outcome of last branch

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

N T

taken

takennot-taken

not-taken

¨ Shared predictor
¨ Two mispredictions per loop

Bimodal Branch Predictors

¨ One-bit branch predictor
¤ Keep track of and use the outcome of last branch

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

N T

taken

takennot-taken

not-taken

Accuracy = 26/30 = 0.86

¨ Shared predictor
¨ Two mispredictions per loop

How to improve?

Bimodal Branch Predictors

¨ Two-bit branch predictor
¤ Increment if taken
¤ Decrement if untaken

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

Bimodal Branch Predictors

¨ Two-bit branch predictor
¤ Increment if taken
¤ Decrement if untaken

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

01 10

taken

takennot-taken

not-
taken

00 11

Bimodal Branch Predictors

¨ Two-bit branch predictor
¤ Increment if taken
¤ Decrement if untaken

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

01 10

taken

takennot-taken

not-
taken

00 11• One misprediction on loop
exit

• Accuracy = 28/30 = 0.93

Bimodal Branch Predictors

¨ Two-bit branch predictor
¤ Increment if taken
¤ Decrement if untaken

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

01 10

taken

takennot-taken

not-
taken

00 11• One misprediction on loop
exit

• Accuracy = 28/30 = 0.93

• How to improve?
• 3-bit predictor?

• Problem?
• A single predictor shared

among many branches

Using Multiple Counters

¨ How to assign a branch to each counter?

Counters

…
branch-1
…
branch-2
…
branch-3

Program code

PC

Using Multiple Counters

¨ How to assign a branch to each counter?

Counters

…
branch-1
…
branch-2
…
branch-3

Program code

PC
a

n

Using Multiple Counters

¨ How to assign a branch to each counter?

Counters

…
branch-1
…
branch-2
…
branch-3

Program code

PC

1. How many branches
are in a program?

2. How many counters
are used?

a

n

Using Multiple Counters

¨ How to assign a branch to each counter?

Counters

…
branch-1
…
branch-2
…
branch-3

Program code

PC

1. How many branches
are in a program?

2. How many counters
are used?

Cost = n2a bits

a

n

Using Multiple Counters

¨ How to assign a branch to each counter?
¤ Decode History Table (DHT)

n Reduced HW with aliasing

Counters

…
branch-1
…
branch-2
…
branch-3

Program code

PC

Least significant bits are
used to select a counter

n

b

Using Multiple Counters

¨ How to assign a branch to each counter?
¤ Decode History Table (DHT)

n Reduced HW with aliasing

Counters

…
branch-1
…
branch-2
…
branch-3

Program code

PC

Least significant bits are
used to select a counter
(+) Reduced hardware
(⎼) Branch aliasing n

b

Using Multiple Counters

¨ How to assign a branch to each counter?
¤ Decode History Table (DHT)

n Reduced HW with aliasing

Counters

…
branch-1
…
branch-2
…
branch-3

Program code

PC

Least significant bits are
used to select a counter
(+) Reduced hardware
(⎼) Branch aliasing

Cost = n2b bits

n

b

Using Multiple Counters

¨ How to assign a branch to each counter?
¤ Decode History Table (DHT)

n Reduced HW with aliasing

¤ Branch History Table (BHT)
n Precisely tracking branches

C
ounters

PC

Most significant bits are
used as tags

Tags

=

hit/miss*

n

b

a-b

Using Multiple Counters

¨ How to assign a branch to each counter?
¤ Decode History Table (DHT)

n Reduced HW with aliasing

¤ Branch History Table (BHT)
n Precisely tracking branches

C
ounters

PC

Most significant bits are
used as tags
(+) No aliasing
(⎼) Missing entries

Tags

=

hit/miss*

n

b

a-b

Using Multiple Counters

¨ How to assign a branch to each counter?
¤ Decode History Table (DHT)

n Reduced HW with aliasing

¤ Branch History Table (BHT)
n Precisely tracking branches

C
ounters

PC

Most significant bits are
used as tags
(+) No aliasing
(⎼) Missing entries

Tags

Cost = (a-b+n)2b bits

=

hit/miss*

n

b

a-b

Using Multiple Counters

¨ How to assign a branch to each counter?
¤ Decode History Table (DHT)

n Reduced HW with aliasing

¤ Branch History Table (BHT)
n Precisely tracking branches

¤ Combined BHT and DHT
n BHT is used on a hit
n DHT is used/updated on a miss

DHT
PC

BHT

=

n
b

a-b n

Using Multiple Counters

¨ How to assign a branch to each counter?
¤ Decode History Table (DHT)

n Reduced HW with aliasing

¤ Branch History Table (BHT)
n Precisely tracking branches

¤ Combined BHT and DHT
n BHT is used on a hit
n DHT is used/updated on a miss

DHT
PC

BHT

Cost = (a-b+2n)2b bits

=

n
b

a-b n

Using Multiple Counters

¨ How to assign a branch to each counter?
¤ Decode History Table (DHT)

n Reduced HW with aliasing

¤ Branch History Table (BHT)
n Precisely tracking branches

¤ Combined BHT and DHT
n BHT is used on a hit
n DHT is used/updated on a miss

DHT
PC

BHT

Cost = (a-b+2n)2b bits

=

DHT typically has more entries than BHT

n
b

a-b n

Correlating Branch Predictor

¨ Executed branches of a program stream may be
correlated

while (1) {
if(x == 0)

y = 0;
…

if(y == 0)
x = 1;

}

Correlating Branch Predictor

¨ Executed branches of a program stream may be
correlated

while (1) {
if(x == 0)

y = 0;
…

if(y == 0)
x = 1;

}

branch-1

branch-2

Correlating Branch Predictor

¨ Executed branches of a program stream may be
correlated

while (1) {
if(x == 0)

y = 0;
…

if(y == 0)
x = 1;

}

branch-1

branch-2

while:
BNEQ R1, R0, skp1
ADDI R2, R0, #0

skp1: ...
BNEQ R2, R0, skp2
ADDI R1, R0, #1

skp2: J while

Correlating Branch Predictor

¨ Executed branches of a program stream may be
correlated

while (1) {
if(x == 0)

y = 0;
…

if(y == 0)
x = 1;

}

branch-1

branch-2

Global History Register: an r-bit shift register
that maintains outcome history

taken?
r

Correlating Branch Predictor

¨ Executed branches of a program stream may be
correlated

while (1) {
if(x == 0)

y = 0;
…

if(y == 0)
x = 1;

}

branch-1

branch-2

Global History Register: an r-bit shift register
that maintains outcome history

taken?

PC

r

n

b

Correlating Branch Predictor

¨ Executed branches of a program stream may be
correlated

while (1) {
if(x == 0)

y = 0;
…

if(y == 0)
x = 1;

}

branch-1

branch-2

Global History Register: an r-bit shift register
that maintains outcome history

taken?

PC

Cost = r+n2b+r bits

r

n

b

Global Branch Predictor

¨ GHR is merged with PC bits to choose a counter

PC

GHR

Shared Counters

n

b

r

Global Branch Predictor

¨ GHR is merged with PC bits to choose a counter

PC

GHR

Shared Counters

XOR

n

b

r

Global Branch Predictor

¨ GHR is merged with PC bits to choose a counter

PC

GHR

Shared Counters

XOR

Cost = r+n2MAX{b, r} bits
n

b

r

Local Branch Predictor

¨ One GHR per branch

PC

History Registers Shared Counters
b

r

n

Local Branch Predictor

¨ One GHR per branch

Cost = r2b+n2r bits

PC

History Registers Shared Counters
b

r

n

Local Branch Predictor

¨ One GHR per branch

PC

History Registers Predictors
b

r

n

Local Branch Predictor

¨ One GHR per branch

Cost = r2b+n2MAX{r, b} bits

PC

History Registers Predictors
b

r

n

Local Branch Predictor

¨ One GHR per branch

Cost = r2b+n2MAX{r, b} bits

PC

History Registers Predictors

XOR

b

r

n

Tournament Branch Predictor

¨ Local predictor may work well for some
applications, while global predictor works well for
some other programs
¤ Include both and identify/use the best one for each

branch

PC

Local
Predictor

Global
Predictor

Tournament
Predictor

output

Two bit saturating counters

Branch Prediction Summary

¨ Dedicated predictor per branch
¤ Program counter is used for assigning predictors to

branches

¨ Capturing correlation among branches
¤ Shift register is used to track history

¨ Predicting branch direction is not enough
¤ Which instruction to be fetched if taken?

¨ Storing the target instruction can eliminate fetching
¤ Extra hardware is required

Branch Target Buffer

¨ Store tags and target addresses for each branch

V Tag Target
PC

Target address

Branch Target Buffer

¨ Store tags and target addresses for each branch

V Tag Target
PC

=

AND Hit/miss*
Target address

