
ILP: CONTROL FLOW

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

¨ Announcement
¤ Homework 2 is due tonight (11:59PM)

¨ This lecture
¤ Performance bottleneck
¤ Program flow
¤ Branch instructions
¤ Branch prediction

Performance Bottleneck

¨ Key performance limitation
¤ Number of instructions fetched per second is limited

Performance Bottleneck

¨ Key performance limitation
¤ Number of instructions fetched per second is limited

¨ How to increase fetch performance?

Performance Bottleneck

¨ Key performance limitation
¤ Number of instructions fetched per second is limited

¨ How to increase fetch performance?
¤ Wider fetch (multiple pipelines)

Performance Bottleneck

¨ Key performance limitation
¤ Number of instructions fetched per second is limited

¨ How to increase fetch performance?
¤ Wider fetch (multiple pipelines)
¤ Deeper fetch (multiple stages)

Performance Bottleneck

¨ Key performance limitation
¤ Number of instructions fetched per second is limited

How to handle branches?

¨ How to increase fetch performance?
¤ Wider fetch (multiple pipelines)
¤ Deeper fetch (multiple stages)

Impact of Branches

¨ Example C code
¤ No structural hazards
¤ What is fetch rate (IPS)?

do {
sum = sum + i;
i = i – 1;

} while(i != j);

Impact of Branches

¨ Example C code
¤ No structural hazards
¤ What is fetch rate (IPS)?

do {
sum = sum + i;
i = i – 1;

} while(i != j);

Loop: ADD R1, R1, R2
ADDI R2, R2, #-1
BNEQ R2, R0, Loop
stall

Assembly code:
¨ Five-stage pipeline

¤ Cycle time = 10ns

Fetch Decode Execute Memory Writeback

Impact of Branches

¨ Example C code
¤ No structural hazards
¤ What is fetch rate (IPS)?

do {
sum = sum + i;
i = i – 1;

} while(i != j);

Loop: ADD R1, R1, R2
ADDI R2, R2, #-1
BNEQ R2, R0, Loop
stall
stall
stall

Assembly code:
¨ Ten-stage pipeline

¤ Cycle time = 5ns

Fetch Decode Execute Memory Writeback

Program Flow

¨ A program contains basic blocks
¤ Only one entry and one exit point per basic block

…
branch

…

branch

…
jump

Program Flow

¨ A program contains basic blocks
¤ Only one entry and one exit point per basic block

…
branch

…

branch

…
jump

¨ Branches
¤ Conditional vs. unconditional

n How to check conditions
n Jumps, calls, and returns

¤ Target address
n Absolute address
n Relative to the program counter

Branch Instructions

¨ Branch penalty due to unknown outcome
¤ Direction and target

¨ How to reduce penalty

Inst.
Memory

PC +

4

N
PC

In
st

ru
ct

io
n

target

clk

clk
direction

Branch Instructions

¨ Branch penalty due to unknown outcome
¤ Direction and target

¨ How to reduce penalty

Can we predict what
instruction to be fetched? Inst.

Memory

PC +

4

N
PC

In
st

ru
ct

io
n

target

clk

clk
direction

Branch Prediction

¨ How to predict the outcome of a branch
¤ Profiling the entire program
¤ Predict based on common cases

Branch Prediction

¨ How to predict the outcome of a branch
¤ Profiling the entire program
¤ Predict based on common cases

i = 10000;
do {

r = i%4;
if(r != 0) {

sum = sum + i;
}
i = i – 1;

} while(i != 0);

Example C/C++ code:

How many branches?

Branch Prediction

¨ How to predict the outcome of a branch
¤ Profiling the entire program
¤ Predict based on common cases

i = 10000;
do {

r = i%4;
if(r != 0) {

sum = sum + i;
}
i = i – 1;

} while(i != 0);

Example C/C++ code:

How many branches?

=>

=>

Branch Prediction

¨ How to predict the outcome of a branch
¤ Profiling the entire program
¤ Predict based on common cases

ADDI R1, R0, #10000
do:

ANDI R2, R1, #3
BEQ R2, R0, skp
ADD R3, R3, R1

skp: ADDI R1, R1, #-1
BNEQ R1, R0, do

Assembly code:

Branch Prediction

¨ How to predict the outcome of a branch
¤ Profiling the entire program
¤ Predict based on common cases

ADDI R1, R0, #10000
do:

ANDI R2, R1, #3
BEQ R2, R0, skp
ADD R3, R3, R1

skp: ADDI R1, R1, #-1
BNEQ R1, R0, do

branch-1

branch-2

TAKEN NOT-TAKEN

Assembly code:

Branch Prediction

¨ How to predict the outcome of a branch
¤ Profiling the entire program
¤ Predict based on common cases

ADDI R1, R0, #10000
do:

ANDI R2, R1, #3
BEQ R2, R0, skp
ADD R3, R3, R1

skp: ADDI R1, R1, #-1
BNEQ R1, R0, do

branch-1

branch-2

TAKEN NOT-TAKEN

Assembly code:

9999

2500 7500

1

Branch Prediction

¨ The goal of branch prediction
¤ To avoid stall cycles in fetch stage

¨ Types
¤ Static prediction (based on direction or profile)

n Always not-taken
n Target = next PC

n Always taken
n Target = unknown

¤ Dynamic prediction
n Special hardware using PC

Branch Prediction

¨ The goal of branch prediction
¤ To avoid stall cycles in fetch stage

¨ Types
¤ Static prediction (based on direction or profile)

n Always not-taken
n Target = next PC

n Always taken
n Target = unknown

¤ Dynamic prediction
n Special hardware using PC

Which ones are influenced
a. Performance
b. Energy
c. Power

Branch Prediction/Misprediction

¨ Prediction accuracy?
¤ A: always not-taken

¤ B: always taken

i = 100;
do {

sum = sum + i;
i = i – 1;

} while(i != 0);

Branch Prediction/Misprediction

¨ Prediction accuracy?
¤ A: always not-taken

¤ B: always taken

i = 100;
do {

sum = sum + i;
i = i – 1;

} while(i != 0);0.01

0.99

Problem

¨ Compute IPC of a scalar processor when there are
¤ no data/structural hazards, only control hazards,
¤ every 5th instruction is a branch, and
¤ 90% branch prediction accuracy

Problem

¨ Compute IPC of a scalar processor when there are
¤ no data/structural hazards, only control hazards,
¤ every 5th instruction is a branch, and
¤ 90% branch prediction accuracy

¨ IPC = 1/ (1 + stalls per instruction)
¨ = 1/(1 + 0.2x0.1x1) = 0.98

Dynamic Branch Prediction

¨ Hardware unit capable of learning at runtime
¤ 1. Prediction logic

n Direction (taken or not-taken)
n Target address (where to fetch next)

¤ 2. Outcome validation and training
n Outcome is computed regardless of prediction

¤ 3. Recovery from misprediction
n Nullify the effect of instructions on the wrong path

Simple Dynamic Predictors

¨ One-bit branch predictor
¤ Keep track of and use the outcome of last executed

branch

¨ Prediction accuracy

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

Simple Dynamic Predictors

¨ One-bit branch predictor
¤ Keep track of and use the outcome of last executed

branch

¨ Prediction accuracy

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

while:
ADDI R3, R0, #10
JMP chk1

for1: …
chk1: BNQ R1, R3, for1

ADDI R3, R0, #20
JMP chk2

for2: …
chk2: BNQ R2, R3, for2

JMP while
** Loop implementation suggested by an student **

Simple Dynamic Predictors

¨ One-bit branch predictor
¤ Keep track of and use the outcome of last executed

branch

¨ Prediction accuracy

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

N T

taken

takennot-taken

not-taken

Simple Dynamic Predictors

¨ One-bit branch predictor
¤ Keep track of and use the outcome of last executed

branch

¨ Prediction accuracy

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

N T

taken

takennot-taken

not-taken

• A single predictor shared by
multiple branches

• Two mispredictions for loops
(1 entry and 1 exit)

Bimodal Branch Predictors

¨ One-bit branch predictor
¤ Keep track of and use the outcome of last executed

branch

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

N T

taken

takennot-taken

not-taken

Accuracy = 26/30 = 0.86

¨ Shared predictor
¨ Two mispredictions per loop

How to improve?

Bimodal Branch Predictors

¨ Two-bit branch predictor
¤ Increment if taken
¤ Decrement if untaken

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

Bimodal Branch Predictors

¨ Two-bit branch predictor
¤ Increment if taken
¤ Decrement if untaken

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

01 10

taken

takennot-taken

not-
taken

00 11

Bimodal Branch Predictors

¨ Two-bit branch predictor
¤ Increment if taken
¤ Decrement if untaken

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

01 10

taken

takennot-taken

not-
taken

00 11• One misprediction on loop
exit

• Accuracy = 28/30 = 0.93

Bimodal Branch Predictors

¨ Two-bit branch predictor
¤ Increment if taken
¤ Decrement if untaken

while(1) {
for(i=0; i<10; i++) {
}
for(j=0; j<20; j++) {
}

}

branch-1

branch-2

01 10

taken

takennot-taken

not-
taken

00 11• One misprediction on loop
exit

• Accuracy = 28/30 = 0.93

• How to improve?
• 3-bit predictor?

• Problem?
• A single predictor shared

by many branches

