
CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

INSTRUCTION LEVEL PARALLELISM

Overview

¨ Announcement
¤ Tonight: release HW2 (due 11:59PM, Sept. 18)

n Note: late submission = no submission
n One of your lowest assignment scores will be dropped J

¨ This lecture
¤ Recap multicycle
¤ Impacts of data dependence
¤ Pipeline performance
¤ Instruction level parallelism

Multicycle Instructions

¨ Data hazards
¤ more read-after-write hazards

load f4, 0(r2)

mul f0, f4, f6

add f2, f0, f8

store f2, 0(r2)

Multicycle Instructions

¨ Data hazards
¤ more read-after-write hazards

load f4, 0(r2)

mul f0, f4, f6

add f2, f0, f8

store f2, 0(r2)

Multicycle Instructions

¨ Data hazards
¤ more read-after-write hazards

load f4, 0(r2)

mul f0, f4, f6

add f2, f0, f8

store f2, 0(r2)

IF ID EX MAWB

IF ID EX MAWB

IF ID A1 A2 A3 A4 MAWB

IF ID M1 M2 M3 M4 M5 M6 M7 MAWB

Multicycle Instructions

¨ Data hazards
¤ potential write-after-write hazards

load f4, 0(r2)

mul f2, f4, f6

add f2, f0, f8

store f2, 0(r2)

Multicycle Instructions

¨ Data hazards
¤ potential write-after-write hazards

load f4, 0(r2)

mul f2, f4, f6

add f2, f0, f8

store f2, 0(r2)

Multicycle Instructions

¨ Data hazards
¤ potential write-after-write hazards

load f4, 0(r2)

mul f2, f4, f6

add f2, f0, f8

store f2, 0(r2)

IF ID EX MAWB

IF ID EX MAWB

IF ID A1 A2 A3 A4 MAWB

IF ID M1 M2 M3 M4 M5 M6 M7 MAWB

Multicycle Instructions

¨ Data hazards
¤ potential write-after-write hazards

load f4, 0(r2)

mul f2, f4, f6

add f2, f0, f8

store f2, 0(r2)

IF ID EX MAWB

IF ID EX MAWB

IF ID A1 A2 A3 A4 MAWB

IF ID M1 M2 M3 M4 M5 M6 M7 MAWB

Out of Order
Write-back!!

Multicycle Instructions

¨ Data hazards
¤ potential write-after-write hazards

load f4, 0(r2)

mul f2, f4, f6

add f2, f0, f8

store f2, 0(r2)

IF ID EX MAWB

IF ID EX MAWB

IF ID A1 A2 A3 A4 MAWB

IF ID M1 M2 M3 M4 M5 M6 M7 MAWB

In-Order
Writes

Multicycle Instructions

¨ Imprecise exception
¤ instructions do not necessarily complete in program

order

load f4, 0(r2)

mul f2, f4, f6

add f3, f0, f8

store f2, 0(r2)

Multicycle Instructions

¨ Imprecise exception
¤ instructions do not necessarily complete in program

order

load f4, 0(r2)

mul f2, f4, f6

add f3, f0, f8

store f2, 0(r2)

IF ID EX MAWB

IF ID EX MAWB

IF ID A1 A2 A3 A4 MAWB

IF ID M1 M2 M3 M4 M5 M6 M7 MAWB

Multicycle Instructions

¨ Imprecise exception
¤ instructions do not necessarily complete in program

order

load f4, 0(r2)

mul f2, f4, f6

add f3, f0, f8

store f2, 0(r2)

IF ID EX MAWB

IF ID EX MAWB

IF ID A1 A2 A3 A4 MAWB

IF ID M1 M2 M3 M4 M5 M6 M7 MAWB Overflow!!

Multicycle Instructions

¨ Imprecise exception
¤ state of the processor must be kept updated with

respect to the program order

load f4, 0(r2)

mul f2, f4, f6

add f3, f0, f8

store f2, 0(r2)

In-order register file updates

IF ID EX MAWB

IF ID EX MAWB

IF ID A1 A2 A3 A4 MAWB

IF ID M1 M2 M3 M4 M5 M6 M7 MAWB

Reorder Buffer

¨ Multicycle Instructions

Ints. Dest.

mul f2, f4, f6
add f4, f0, f1
sub f6, f3, f7

Reorder Buffer

¨ Multicycle Instructions

mul f2
add f4
sub f6

Ints. Dest.

mul f2, f4, f6
add f4, f0, f1
sub f6, f3, f7

Data Dependence

¨ Point of production
¤ The pipeline stage where an instruction produces a

value that can be used by its following instructions

Ints. 1: producer

PoP

time

Data Dependence

¨ Point of production
¤ The pipeline stage where an instruction produces a

value that can be used by its following instructions

¨ Point of consumption
¤ The pipeline stage where an instruction consumes a

produced data

Ints. 1: producer

Inst. 2: consumer

PoPPoC

time

Problem

¨ Consider a 10-stage pipeline processor, where
point of production and point of consumption are
separated by 4 cycles. Assume that half the
instructions do not introduce a data hazard and half
the instructions depend on their preceding
instruction. What is the maximum attainable IPC?

Problem

¨ Consider a 10-stage pipeline processor, where
point of production and point of consumption are
separated by 4 cycles. Assume that half the
instructions do not introduce a data hazard and half
the instructions depend on their preceding
instruction. What is the maximum attainable IPC?

…

Instructions

Stall Cycles

Problem

¨ Consider a 10-stage pipeline processor, where
point of production and point of consumption are
separated by 4 cycles. Assume that half the
instructions do not introduce a data hazard and half
the instructions depend on their preceding
instruction. What is the maximum attainable IPC?

…

Instructions

Stall Cycles

IPC = = 0.4
2

5

Performance vs. Pipeline Depth

¨ Impact of stall cycles on performance
¤ Independent instructions
¤ Dependent instructions

Pe
rf

or
m

an
ce

Pipeline Depth (number of stages)

No Stalls

Performance vs. Pipeline Depth

¨ Impact of stall cycles on performance
¤ Independent instructions
¤ Dependent instructions

1
𝑙𝑎𝑡𝑐ℎ	𝑙𝑎𝑡𝑒𝑛𝑐𝑦

Pe
rf

or
m

an
ce

Pipeline Depth (number of stages)

No Stalls

Performance vs. Pipeline Depth

¨ Impact of stall cycles on performance
¤ Independent instructions
¤ Dependent instructions

1
𝑙𝑎𝑡𝑐ℎ	𝑙𝑎𝑡𝑒𝑛𝑐𝑦

Pe
rf

or
m

an
ce

Pipeline Depth (number of stages)

No Stalls Fully Stalled

Performance vs. Pipeline Depth

¨ Impact of stall cycles on performance
¤ Independent instructions
¤ Dependent instructions

1
𝑙𝑎𝑡𝑐ℎ	𝑙𝑎𝑡𝑒𝑛𝑐𝑦

Pe
rf

or
m

an
ce

Pipeline Depth (number of stages)

No Stalls Fully Stalled Average

Performance vs. Pipeline Depth

¨ Impact of stall cycles on performance
¤ Independent instructions
¤ Dependent instructions

1
𝑙𝑎𝑡𝑐ℎ	𝑙𝑎𝑡𝑒𝑛𝑐𝑦

Pe
rf

or
m

an
ce

Pipeline Depth (number of stages)

No Stalls Fully Stalled Average

Increase overlap among
instructions in the pipeline

(Instruction Level Parallelism)

Instruction Level Parallelism

¨ Potential overlap among instructions
¤ A property of the program dataflow

ADD R1, R2, R3

SUB R4, R1, R5

XOR R6, R4, R7

AND R8, R6, R9

Code 1

ADD R1, R2, R3

SUB R4, R6, R5

XOR R8, R2, R7

AND R9, R6, R0

Code 2

Instruction Level Parallelism

¨ Potential overlap among instructions
¤ A property of the program dataflow

ADD R1, R2, R3

SUB R4, R1, R5

XOR R6, R4, R7

AND R8, R6, R9

Code 1

ADD R1, R2, R3

SUB R4, R6, R5

XOR R8, R2, R7

AND R9, R6, R0

Code 2

ILP = 1
Fully serial

ILP = 4
Fully parallel

Instruction Level Parallelism

¨ Potential overlap among instructions
¤ A property of the program dataflow
¤ Influenced by compiler

X ß A + B + C + D

Instruction Level Parallelism

¨ Potential overlap among instructions
¤ A property of the program dataflow
¤ Influenced by compiler

Code 1:

ADD R5, R1, R2

ADD R5, R5, R3

ADD R5, R5, R4

X ß A + B + C + D

Instruction Level Parallelism

¨ Potential overlap among instructions
¤ A property of the program dataflow
¤ Influenced by compiler

Code 1:

ADD R5, R1, R2

ADD R5, R5, R3

ADD R5, R5, R4

Code 2:

ADD R6, R1, R2

ADD R7, R3, R4

ADD R5, R6, R7

X ß A + B + C + D

Instruction Level Parallelism

¨ Potential overlap among instructions
¤ A property of the program dataflow
¤ Influenced by compiler

Code 1:

ADD R5, R1, R2

ADD R5, R5, R3

ADD R5, R5, R4

Code 2:

ADD R6, R1, R2

ADD R7, R3, R4

ADD R5, R6, R7

X ß A + B + C + D

Average ILP = 3/3 = 1
Five registers

Average ILP = 3/2 = 1.5
Seven registers

Instruction Level Parallelism

¨ Potential overlap among instructions
¤ A property of the program dataflow
¤ Influenced by compiler

¨ An upper limit for attainable IPC for a given code
¤ IPC represents exploited ILP

ADD R5, R1, R2

ADD R5, R5, R3

ADD R5, R5, R4

ADD R6, R1, R2

ADD R7, R3, R4

ADD R5, R6, R7

Average ILP = 3/3 = 1
Five registers

Average ILP = 3/2 = 1.5
Seven registers

Instruction Level Parallelism

¨ Potential overlap among instructions
¤ A property of the program dataflow
¤ Influenced by compiler

¨ An upper limit for attainable IPC for a given code
¤ IPC represents exploited ILP

¨ Can be exploited by HW-/SW-intensive techniques
¤ Dynamic scheduling in hardware
¤ Static scheduling in software (compiler)

