PIPELINING: 5-STAGE PIPELINE

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah

UNIVERSITY ,]
U S T CS/ECE 6810: Computer Architecture

Overview

Announcement

O Tonight: Homework 1 deadline (11:59PM)
Verify your uploaded files before deadline

This lecture
O Impacts of pipelining on performance
O The MIPS five-stage pipeline

O Pipeline hazards
Structural hazards
Data hazards

Single-cycle RISC Architecture

Example: simple MIPS architecture

O Critical path includes all of the processing steps

Controller ' Write Back

Register
File

Inst. Fetch !! Inst. Decode i Execute i Memory

__

Single-cycle RISC Architecture
e

Example program
O CT=6éns; CPU Time = 2

ANDR1,R2R3 (D

XOR R4,R2,R3)

SUB R5,R1,R4 0

ADD R6,R1,R4 .

MUL R7,R5,R6

CPU Time = IC x CPI x CT Time

Single-cycle RISC Architecture

-
Example program
O CT=6éns; CPU Time = 5 x 1 x 6ns = 30ns

ANDR1R2,R3 (D
XOR R4,R2,R3)
SUB R5,R1,R4)
ADD R6,R1,R4 .

MUL R7,R5,R6

How to improve?

CPU Time = IC x CPI x CT Time

Reusing Idle Resources
-

Each processing step finishes in a fraction of a cycle

O Idle resources can be reused for processing next
instructions

~
AN
AY

!/ Write Back

Register
File

Inst. Fetch | i Inst. Decode ;! Execute i Memory

Pipelined Architecture
-

Five stage pipeline
O Critical path determines the cycle time

~
AN
AY

!/ . Write Back

Register
File

Inst. Fetch B Inst. Decode Execute

Pipelined Architecture
-

Example program
O CT=1.5ns; CPU Time = ¢

anDR1R2R3 | O

XOR R4,R2,R3 g0 B
SUB R5,R1,R4 100

ADD R6,R1,R4 E.j
MUL R7.R5,R6 §0 B

CPU Time = IC x CPI x CT Time

Pipelined Architecture
-

Example program
O CT=1.5ns; CPU Time = 5 x 5 x 1.5ns = 37.5ns > 30ns

WORSE!!
anor1R2R3 [[

XOR R4,R2,R3 g0 B
SUB R5.R1.R4 g0 B

ADD R6,R1.R4 E‘:]
MUL R7.R5,R6 _]

CPU Time =IC x CPI x CT Time

Pipelined Architecture
.
Example program
O CT=1.5ns; CPU Time = ¢
anDR1R2R3 | O
xorr4R2R3 | O
SUB R5,R1,R4 R
ADD R6,R1,R4 B0 B
R

MUL R7,R5,R6

CPU Time = IC x CPI x CT Time

Pipelined Architecture
-

Example program
OCT=1.5ns; CPUTime =92 x 1 x 1.5ns = 13.5ns

anor1R2R3 [JJJJlf] Whatis the cost of pipelining?
xorr4r2R3 [O
SUB R5,R1,R4 g0 B
ADD R6,R1,R4 g0 B
i 8B

MUL R7,R5,R6

CPU Time =IC x CPI x CT Time

Pipelining Technique

Improving throughput at the expense of latency
ODelay: D =T+ nb
O Throughput: IPS = n/(T + nd)

Combinational Logic
Critical Path Delay = 30

|

Pipelining Technique

Improving throughput at the expense of latency
ODelay: D =T+ nb
O Throughput: IPS = n/(T + nd)

Combinational Logic D=
Critical Path Delay = 30 IPS =
Combinational Lo D=
Critical Path Delay IPS =
Comb. Log Comb. Log
Delay = 1 Delay = 1

Combinational Lo
Critical Path Delay

I D

Comb. Log

Delay = 1

Pipelining Technique

Improving throughput at the expense of latency

ODelay: D =T+ nb
O Throughput: IPS = n/(T + nd)

Combinational Logic
Critical Path Delay = 30

Combinational Lo
Critical Path Delay

Combinational Lo
Critical Path Delay

Comb. Log
Delay = 1

Comb. Log
Delay = 1

Comb. Log
Delay = 1

I D

D =31
IPS = 1/31

D =32
IPS = 2/32

D =33
IPS = 3/33

Pipelining Latency vs. Throughput
-

Theoretical delay and throughput models for
perfect pipelining

—Delay (D)
o 20
S
g15
9
o010
oo
o)
2 5
3
2 0
0 50 100 150 200

Number of Pipeline Stages

Pipelining Latency vs. Throughput
-

Theoretical delay and throughput models for
perfect pipelining

—Delay (D) —Throughput (IPS)

/
g

o) 50 100 150 200
Number of Pipeline Stages

- N
o O

Relative Performance
o

o O

Five Stage MIPS Pipeline

Simple Five Stage Pipeline
e

A pipelined load-store architecture that processes
up to one instruction per cycle

~
AN
AY

!/ Write Back

Register
File

Inst. Fetch | i Inst. Decode ;! Execute i Memory

Instruction Fetch
-

Read an instruction from memory (I-Memory)

O Use the program counter (PC) to index into the |-
Memory

O Compute NPC by incrementing current PC
What about branches?

Update pipeline registers

O Write the instruction into the pipeline registers

Instruction Fetch

Branch Target

NPC = PC + 4

Why increment
by 4?

Instruction

Pipeline
Register

Instruction Fetch

Branch Target

NPC = PC + 4

Why increment
by 4?

Instruction

Critical Path = Max{P1, P2, P3} Pipeline

Register

Instruction Decode
e

Generate control signals for the opcode bits

Read source operands from the register file (RF)

O Use the specifiers for indexing RF

How many read ports are required?

Update pipeline registers
O Send the operand and immediate values to next stage

O Pass control signals and NPC to next stage

Instruction Decode

target

Register
File

Instruction

Pipeline Pipeline
Register Register

Execute Stage
S —

Perform ALU operation
O Compute the result of ALU

Operation type: control signals

First operand: contents of a register

Second operand: either a register or the immediate value
O Compute branch target

Target = NPC + immediate

Update pipeline registers

O Control signals, branch target, ALU results, and
destination

Execute Stage

ALU

Pipeline Pipeline
Register Register

Memory Access
S

Access data memory
O Load/store address: ALU outcome

O Control signals determine read or write access

Update pipeline registers
O ALU results from execute
O Loaded data from D-Memory

O Destination register

Memory Access

Pipeline Pipeline
Register Register

Register Write Back

-
Update register file
O Control signals determine if a register write is needed

O Only one write port is required
Write the ALU result to the destination register, or

Write the loaded data into the register file

Five Stage Pipeline
-
|ldeal pipeline: IPC=1

O Is there enough resources to keep the pipeline stages
busy all the time?

Inst. Fetch Decode Execute Memory Writeback

ALU

=F

Pipeline Hazards

Pipeline Hazards

Structural hazards: multiple instructions compete for
the same resource

Data hazards: a dependent instruction cannot
proceed because it needs a value that hasn’t been
produced

Control hazards: the next instruction cannot be
fetched because the outcome of an earlier branch is
unknown

Structural Hazards

1. Unified memory for instruction and data

R1& Mem([R2]

R3¢ Mem[R20]

R6< R4-R5

R7< R1+R0

Structural Hazards

1. Unified memory for instruction and data

Time (in clock cyclesy

CcC 1 cc2 CcC 3 cCc4 CcCs cCe6

R1¢ Mem[R2] [» D ahad —Reg
R3¢ Mem[R20] ~H| : ;{F—
R6< R4-R5 - : ;ﬂ
R7< R1+R0 i_ 3

Separate inst. and data memories. —/

||

|

Structural Hazards

1. Unified memory for instruction and data

2. Register file with shared read/write access ports

Time (in clock cyclesy

CcC 1

R1& Mem[R2] [w H

cC4 CCs cCe6

cc 2
[Reg

R3¢ Mem[R20] ”

R6< R4-R5 w1 [e Lo F{
Feo [
R7¢ R1+R0 m | = mes [
/]

|
| |

Structural Hazards

1. Unified memory for instruction and data

2. Register file with shared read/write access ports

Time (in clock cyclesy

CcC 1

R1& Mem[R2] [w H

cCc4 CcCs cCe6

cc 2
[Reg

R3¢ Mem[R20] ”

R6< R4-R5 o V= »
e] | ;4
R7¢ R1+R0 v gl

Register access in half cycles. e

|
| |

