
PIPELINING: 5-STAGE PIPELINE

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah



Overview

¨ Announcement
¤ Tonight: Homework 1 deadline (11:59PM)

n Verify your uploaded files before deadline

¨ This lecture
¤ Impacts of pipelining on performance
¤ The MIPS five-stage pipeline
¤ Pipeline hazards

n Structural hazards
n Data hazards



Single-cycle RISC Architecture

¨ Example: simple MIPS architecture
¤ Critical path includes all of the processing steps
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Single-cycle RISC Architecture

¨ Example program
¤ CT=6ns; CPU Time = ?

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT



Single-cycle RISC Architecture

¨ Example program
¤ CT=6ns; CPU Time = 5 x 1 x 6ns = 30ns

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT

How to improve?



Reusing Idle Resources

¨ Each processing step finishes in a fraction of a cycle
¤ Idle resources can be reused for processing next 
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Pipelined Architecture

¨ Five stage pipeline
¤ Critical path determines the cycle time
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Pipelined Architecture

¨ Example program
¤ CT=1.5ns; CPU Time = ?

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT



Pipelined Architecture

¨ Example program
¤ CT=1.5ns; CPU Time = 5 x 5 x 1.5ns = 37.5ns > 30ns

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT

WORSE!!



Pipelined Architecture

¨ Example program
¤ CT=1.5ns; CPU Time = ?

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT



Pipelined Architecture

¨ Example program
¤ CT=1.5ns; CPU Time = 9 x 1 x 1.5ns = 13.5ns

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT

What is the cost of pipelining?



Pipelining Technique

¨ Improving throughput at the expense of latency
¤ Delay: D = T + nδ
¤ Throughput: IPS = n/(T + nδ)

Combinational Logic
Critical Path Delay = 30
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Pipelining Technique

¨ Improving throughput at the expense of latency
¤ Delay: D = T + nδ
¤ Throughput: IPS = n/(T + nδ)

Combinational Logic
Critical Path Delay = 30

Combinational Logic
Critical Path Delay = 15

Combinational Logic
Critical Path Delay = 15

Comb. Logic
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Comb. Logic
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Comb. Logic
Delay = 10

D = 31
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Pipelining Latency vs. Throughput

¨ Theoretical delay and throughput models for 
perfect pipelining
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Pipelining Latency vs. Throughput

¨ Theoretical delay and throughput models for 
perfect pipelining
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Five Stage MIPS Pipeline



Simple Five Stage Pipeline

¨ A pipelined load-store architecture that processes 
up to one instruction per cycle
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Instruction Fetch

¨ Read an instruction from memory (I-Memory)
¤ Use the program counter (PC) to index into the I-

Memory
¤ Compute NPC by incrementing current PC

n What about branches?

¨ Update pipeline registers
¤ Write the instruction into the pipeline registers
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Instruction Decode

¨ Generate control signals for the opcode bits

¨ Read source operands from the register file (RF)
¤ Use the specifiers for indexing RF

n How many read ports are required?

¨ Update pipeline registers
¤ Send the operand and immediate values to next stage
¤ Pass control signals and NPC to next stage



Instruction Decode
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Execute Stage

¨ Perform ALU operation
¤ Compute the result of ALU

n Operation type: control signals
n First operand: contents of a register
n Second operand: either a register or the immediate value

¤ Compute branch target
n Target = NPC + immediate

¨ Update pipeline registers
¤ Control signals, branch target, ALU results, and 

destination
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Memory Access

¨ Access data memory
¤ Load/store address: ALU outcome
¤ Control signals determine read or write access

¨ Update pipeline registers
¤ ALU results from execute
¤ Loaded data from D-Memory
¤ Destination register



Memory Access
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Register Write Back

¨ Update register file
¤ Control signals determine if a register write is needed
¤ Only one write port is required

n Write the ALU result to the destination register, or
n Write the loaded data into the register file



Five Stage Pipeline

¨ Ideal pipeline: IPC=1
¤ Is there enough resources to keep the pipeline stages 

busy all the time?
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Pipeline Hazards



Pipeline Hazards

¨ Structural hazards: multiple instructions compete for 
the same resource

¨ Data hazards: a dependent instruction cannot 
proceed because it needs a value that hasn’t been 
produced

¨ Control hazards: the next instruction cannot be 
fetched because the outcome of an earlier branch is 
unknown



Structural Hazards

¨ 1. Unified memory for instruction and data

R1ß Mem[R2]

R7ß R1+R0

R6ß R4-R5

R3ß Mem[R20]



Structural Hazards

¨ 1. Unified memory for instruction and data

R1ß Mem[R2]

R7ß R1+R0

R6ß R4-R5

R3ß Mem[R20]

Separate inst. and data memories.



Structural Hazards

¨ 1. Unified memory for instruction and data
¨ 2. Register file with shared read/write access ports

R1ß Mem[R2]

R7ß R1+R0

R6ß R4-R5

R3ß Mem[R20]



Structural Hazards

¨ 1. Unified memory for instruction and data
¨ 2. Register file with shared read/write access ports

R1ß Mem[R2]

R7ß R1+R0

R6ß R4-R5

R3ß Mem[R20]

Register access in half cycles.


