
PIPELINING: 5-STAGE PIPELINE

CS/ECE 6810: Computer Architecture

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah



Overview

¨ Announcement
¤ Tonight: Homework 1 deadline (11:59PM)

n Verify your uploaded files before deadline

¨ This lecture
¤ Impacts of pipelining on performance
¤ The MIPS five-stage pipeline
¤ Pipeline hazards

n Structural hazards
n Data hazards



Single-cycle RISC Architecture

¨ Example: simple MIPS architecture
¤ Critical path includes all of the processing steps

Write Back

Inst. Fetch Inst. Decode Execute Memory

Inst.
Memory

Register
File

ALU
Data

Memory

PC

Controller



Single-cycle RISC Architecture

¨ Example program
¤ CT=6ns; CPU Time = ?

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT



Single-cycle RISC Architecture

¨ Example program
¤ CT=6ns; CPU Time = 5 x 1 x 6ns = 30ns

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT

How to improve?



Reusing Idle Resources

¨ Each processing step finishes in a fraction of a cycle
¤ Idle resources can be reused for processing next 

instructions
Write Back

Inst. Fetch Inst. Decode Execute Memory

Inst.
Memory

Register
File

ALU
Data

Memory

PC



Pipelined Architecture

¨ Five stage pipeline
¤ Critical path determines the cycle time

Write Back

Inst. Fetch Inst. Decode Execute Memory

Inst.
Memory

Register
File

ALU
Data

Memory

PC

1.5ns 1.5ns1.25ns1.05ns

0.7ns



Pipelined Architecture

¨ Example program
¤ CT=1.5ns; CPU Time = ?

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT



Pipelined Architecture

¨ Example program
¤ CT=1.5ns; CPU Time = 5 x 5 x 1.5ns = 37.5ns > 30ns

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT

WORSE!!



Pipelined Architecture

¨ Example program
¤ CT=1.5ns; CPU Time = ?

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT



Pipelined Architecture

¨ Example program
¤ CT=1.5ns; CPU Time = 9 x 1 x 1.5ns = 13.5ns

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7,R5,R6

TimeCPU Time = IC x CPI x CT

What is the cost of pipelining?



Pipelining Technique

¨ Improving throughput at the expense of latency
¤ Delay: D = T + nδ
¤ Throughput: IPS = n/(T + nδ)

Combinational Logic
Critical Path Delay = 30



Pipelining Technique

¨ Improving throughput at the expense of latency
¤ Delay: D = T + nδ
¤ Throughput: IPS = n/(T + nδ)

Combinational Logic
Critical Path Delay = 30

Combinational Logic
Critical Path Delay = 15

Combinational Logic
Critical Path Delay = 15

Comb. Logic
Delay = 10

Comb. Logic
Delay = 10

Comb. Logic
Delay = 10

D =
IPS =

D =
IPS =

D =
IPS =



Pipelining Technique

¨ Improving throughput at the expense of latency
¤ Delay: D = T + nδ
¤ Throughput: IPS = n/(T + nδ)

Combinational Logic
Critical Path Delay = 30

Combinational Logic
Critical Path Delay = 15

Combinational Logic
Critical Path Delay = 15

Comb. Logic
Delay = 10

Comb. Logic
Delay = 10

Comb. Logic
Delay = 10

D = 31
IPS = 1/31

D = 32
IPS = 2/32

D = 33
IPS = 3/33



Pipelining Latency vs. Throughput

¨ Theoretical delay and throughput models for 
perfect pipelining

0

5

10

15

20

0 50 100 150 200

Re
la

tiv
e 

Pe
rf

or
m

an
ce

Number of Pipeline Stages

Delay (D)



Pipelining Latency vs. Throughput

¨ Theoretical delay and throughput models for 
perfect pipelining

0

5

10

15

20

0 50 100 150 200

Re
la

tiv
e 

Pe
rf

or
m

an
ce

Number of Pipeline Stages

Delay (D) Throughput (IPS)



Five Stage MIPS Pipeline



Simple Five Stage Pipeline

¨ A pipelined load-store architecture that processes 
up to one instruction per cycle

Write Back

Inst. Fetch Inst. Decode Execute Memory

Inst.
Memory

Register
File

ALU
Data

Memory

PC



Instruction Fetch

¨ Read an instruction from memory (I-Memory)
¤ Use the program counter (PC) to index into the I-

Memory
¤ Compute NPC by incrementing current PC

n What about branches?

¨ Update pipeline registers
¤ Write the instruction into the pipeline registers



Instruction Fetch

Memory

PC +

4

N
PC

In
st

ru
ct

io
n

Branch Target

Pipeline
Register

Why increment 

by 4?

NPC = PC + 4clock

clock



Instruction Fetch

Memory

PC +

4

N
PC

In
st

ru
ct

io
n

Branch Target

Pipeline
Register

Why increment 

by 4?

NPC = PC + 4

Critical Path = Max{P1, P2, P3}

P1

P2

P3

clock

clock



Instruction Decode

¨ Generate control signals for the opcode bits

¨ Read source operands from the register file (RF)
¤ Use the specifiers for indexing RF

n How many read ports are required?

¨ Update pipeline registers
¤ Send the operand and immediate values to next stage
¤ Pass control signals and NPC to next stage



Instruction Decode

Register
File

ct
rl

Pipeline
Register

N
PC

N
PC

In
st

ru
ct

io
n

Pipeline
Register

re
g

re
g

decode

target



Execute Stage

¨ Perform ALU operation
¤ Compute the result of ALU

n Operation type: control signals
n First operand: contents of a register
n Second operand: either a register or the immediate value

¤ Compute branch target
n Target = NPC + immediate

¨ Update pipeline registers
¤ Control signals, branch target, ALU results, and 

destination



Execute Stage

ALU

ct
rl

Pipeline
Register

N
PC

Ta
rg

et

Pipeline
Register

re
g

re
g

+

re
g

ct
rl

Re
s



Memory Access

¨ Access data memory
¤ Load/store address: ALU outcome
¤ Control signals determine read or write access

¨ Update pipeline registers
¤ ALU results from execute
¤ Loaded data from D-Memory
¤ Destination register



Memory Access

ct
rl

Pipeline
Register

Ta
rg

et

Pipeline
Register

Re
s

re
g

D
at

ct
rl

Re
s

Memory

addr

data data



Register Write Back

¨ Update register file
¤ Control signals determine if a register write is needed
¤ Only one write port is required

n Write the ALU result to the destination register, or
n Write the loaded data into the register file



Five Stage Pipeline

¨ Ideal pipeline: IPC=1
¤ Is there enough resources to keep the pipeline stages 

busy all the time?

+

4

PC
+

Mem

Reg.
File

ALU

Mem
Reg.
File

Inst. Fetch Decode Execute Memory Writeback



Pipeline Hazards



Pipeline Hazards

¨ Structural hazards: multiple instructions compete for 
the same resource

¨ Data hazards: a dependent instruction cannot 
proceed because it needs a value that hasn’t been 
produced

¨ Control hazards: the next instruction cannot be 
fetched because the outcome of an earlier branch is 
unknown



Structural Hazards

¨ 1. Unified memory for instruction and data

R1ß Mem[R2]

R7ß R1+R0

R6ß R4-R5

R3ß Mem[R20]



Structural Hazards

¨ 1. Unified memory for instruction and data

R1ß Mem[R2]

R7ß R1+R0

R6ß R4-R5

R3ß Mem[R20]

Separate inst. and data memories.



Structural Hazards

¨ 1. Unified memory for instruction and data
¨ 2. Register file with shared read/write access ports

R1ß Mem[R2]

R7ß R1+R0

R6ß R4-R5

R3ß Mem[R20]



Structural Hazards

¨ 1. Unified memory for instruction and data
¨ 2. Register file with shared read/write access ports

R1ß Mem[R2]

R7ß R1+R0

R6ß R4-R5

R3ß Mem[R20]

Register access in half cycles.


