PERFORMANCE METRICS

Mahdi Nazm Bojnordi
Assistant Professor
School of Computing
University of Utah

Overview

\square Announcement

- Aug. 28 ${ }^{\text {th }}$: Homework 1 release (due on Sept. $4^{\text {th }}$)
- Verify your uploaded files before deadline
\square This lecture
- Technology trends
- Measuring performance
- Principles of computer design
- Power and energy
- Cost and reliability

Technology Trends (Historical Data)

\square IC logic Technology: on-chip transistor count doubles every 18-24 months (Moore's Law)

- Transistor density increases by 35% per year
- Die size increases 10-20\% per year
\square DRAM Technology
- Chip capacity increases $25-40 \%$ per year
\square Flash Storage
- Chip capacity increases 50-60\% per year

Technology Trends (Historical Data)

\square Recent Microprocessor Trends

Source: Micron University Symposium

Technology Trends (Historical Data)

\square Recent Microprocessor Trends

Source: Micron University Symposium

Measuring Performance

How to measure performance?

Measuring Performance

\square How to measure performance?

- Latency or response time
- The time between start and completion of an event (e.g., milliseconds for disk access)
- Bandwidth or throughput
- The total amount of work done in a given time (e.g., megabytes per second for disk transfer)

Measuring Performance

\square How to measure performance?

- Latency or response time
- The time between start and completion of an event (e.g., milliseconds for disk access)
- Bandwidth or throughput
- The total amount of work done in a given time (e.g., megabytes per second for disk transfer)
\square Which one is better? latency or throughput?

Measuring Performance

\square Which one is better (faster)?

Bus

- Delay=10m
- Capacity=4p
- Delay=30m
- Capacity=30p

Measuring Performance

\square Which one is better (faster)?

Car

Bus

- Delay=10m
- Capacity=4p
- Throughput=0.4PPM
- Delay=30m
- Capacity=30p
- Throughput=1PPM

It really depends on your needs (goals).

Measuring Performance

\square What program to use for measuring performance?
\square Benchmarks Suites

- A set of representative programs that are likely relevant to the user
- Examples:
- SPEC CPU 2017: CPU-oriented programs (for desktops)
- SPECweb: throughput-oriented (for servers)
- EEMBC: embedded processors/workloads

Summarizing Performance Numbers

\square How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	10	5	25
Prog-2	5	10	20
Prog-3	25	10	25

Summarizing Performance Numbers

\square How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	10	5	25
Prog-2	5	10	20
Prog-3	25	10	25

* AM: Arithmetic Mean (good for times and latencies)

$$
\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Summarizing Performance Numbers

\square How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	$1 / 10$	$1 / 5$	$1 / 25$
Prog-2	$1 / 5$	$1 / 10$	$1 / 20$
Prog-3	$1 / 25$	$1 / 10$	$1 / 25$

Summarizing Performance Numbers

\square How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	$1 / 10$	$1 / 5$	$1 / 25$
Prog-2	$1 / 5$	$1 / 10$	$1 / 20$
Prog-3	$1 / 25$	$1 / 10$	$1 / 25$

- HM: Harmonic Mean (good for rates and throughput)
n

Summarizing Performance Numbers

\square How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	$10 / 10$	$10 / 5$	$10 / 25$
Prog-2	$5 / 5$	$5 / 10$	$5 / 20$
Prog-3	$25 / 25$	$25 / 10$	$25 / 25$

Summarizing Performance Numbers

\square How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	$10 / 10$	$10 / 5$	$10 / 25$
Prog-2	$5 / 5$	$5 / 10$	$5 / 20$
Prog-3	$25 / 25$	$25 / 10$	$25 / 25$

* GM: Geometric Mean (good for speedups)

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}
$$

Processor Performance

\square Clock cycle time ($\mathrm{CT}=1$ /clock frequency)

- Influenced by technology and pipeline
\square Cycles per instruction (CPI)
- Influenced by architecture
- IPC may be used instead (IPC = 1/CPI)
\square Instruction count (IC)
- Influenced by ISA and compiler
\square CPU time $=I C \times C P I \times C T$

Example Problem

Find the average CPI of a load/store machine when running an application that results in the following statistics

Instruction Type	Frequency	Cycles
Load	20%	2
Store	20%	2
Branch	20%	2
ALU	40%	1

Example Problem

Find the average CPI of a load/store machine when running an application that results in the following statistics

Instruction Type	Frequency	Cycles
Load	20%	2
Store	20%	2
Branch	20%	2
ALU	40%	1

$$
\text { CPI }=0.2 \times 2+0.2 \times 2+0.2 \times 2+0.4 \times 1=1.6
$$

Example Problem

Find the average CPI of a load/store machine when running an application that results in the following statistics

Instruction Type	Frequency	Cycles
Load	20%	2
Store	20%	2
Branch	20%	2
ALU	40%	1

. 50\% of the branches can be combined with ALU instructions and executed as Branch-ALU fused in 2 cycles. What is the new average CPI?

Example Problem

\square Find the average CPI of a load/store machine when running an application that results in the following statistics

Instruction Type	Frequency	Cycles
Load	$\sim 22 \%$	2
Store	$\sim 22 \%$	2
Branch	$\sim 11 \%$	2
ALU	$\sim 33 \%$	1
Branch-ALU	$\sim 12 \%$	2

. 50\% of the branches can be combined with ALU instructions and executed as Branch-ALU fused in 2 cycles. What is the new average CPI? CPI $=1.67$

Processor Performance

\square Points to note

- Performance $=1 /$ execution time
$\square \mathrm{AM}(\mathrm{IPCs})=1 / \mathrm{HM}(\mathrm{CPIs})$
- GM(IPCs) $=1 /$ GM(CPIs)
$\frac{1}{n} \sum_{i=1}^{n} x_{i}$

$$
\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}} \quad\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}
$$

Speedup vs. Percentage

\square Speedup $=$ old execution time / new execution time
\square Improvement $=$ (new performance - old performance)/old performance
\square My old and new computers run a particular program in 80 and 60 seconds; compute the followings
\square speedup
\square percentage increase in performance
\square percentage reduction in execution time

Speedup vs. Percentage

\square Speedup $=$ old execution time / new execution time
\square Improvement $=$ (new performance - old performance)/old performance
\square My old and new computers run a particular program in 80 and 60 seconds; compute the followings

- speedup $=80 / 60=\sim 1.33$
\square percentage increase in performance $=33 \%$
- percentage reduction in execution time $=20 / 80=25 \%$

Example Problem

The IPC of a new computer is 20% worse than the old one. Its clock speed is 30% higher than the old one. If running the same binaries on both machines. What speedup is the new computer providing?

Example Problem

The IPC of a new computer is 20% worse than the old one. Its clock speed is 30% higher than the old one. If running the same binaries on both machines. What speedup is the new computer providing?

	OLD	NEW
IPC	1	0.8
Frequency	1	1.3
IC	1	1
CPI	$?$	$?$
CT	$?$	$?$
CPU Time	$?$	$?$

Example Problem

The IPC of a new computer is 20% worse than the old one. Its clock speed is 30% higher than the old one. If running the same binaries on both machines. What speedup is the new computer providing?

$$
\text { Speedup }=1 / 0.96=1.04
$$

	OLD	NEW
IPC	1	0.8
Frequency	1	1.3
IC	1	1
CPI	$1 / 1$	$1 / 0.8=1.25$
CT	$1 / 1$	$1 / 1.3=\sim 0.77$
CPU Time	1	~ 0.96

Principles of Computer Design

\square Designing better computer systems requires better utilization of resources

- Parallelism
- Multiple units for executing partial or complete tasks
- Principle of locality (temporal and spatial)
- Reuse data and functional units
- Common Case
- Use additional resources to improve the common case

