PERFORMANCE METRICS

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

THE

OF UTAH

CS/ECE 6810: Computer Architecture UNIVERSITY

Overview

Announcement

Aug. 28th: Homework 1 release (due on Sept. 4th)
Verify your uploaded files before deadline

This lecture

- Technology trends
- Measuring performance
- Principles of computer design
- Power and energy
- Cost and reliability

Technology Trends (Historical Data)

- IC logic Technology: on-chip transistor count doubles every 18-24 months (Moore's Law)
 - Transistor density increases by 35% per year
 - Die size increases 10-20% per year
- DRAM Technology
 - Chip capacity increases 25-40% per year
- Flash Storage
 - Chip capacity increases 50-60% per year

Technology Trends (Historical Data)

Recent Microprocessor Trends

Source: Micron University Symposium

Technology Trends (Historical Data)

Recent Microprocessor Trends

Source: Micron University Symposium

□ How to measure performance?

□ How to measure performance?

■ Latency or response time

The time between start and completion of an event (e.g., milliseconds for disk access)

- Bandwidth or throughput
 - The total amount of work done in a given time (e.g., megabytes per second for disk transfer)

□ How to measure performance?

■ Latency or response time

The time between start and completion of an event (e.g., milliseconds for disk access)

- Bandwidth or throughput
 - The total amount of work done in a given time (e.g., megabytes per second for disk transfer)

Which one is better? latency or throughput?

□ Which one is better (faster)?

- Delay=10m
- Capacity=4p

- Delay=30m
- Capacity=30p

□ Which one is better (faster)?

- Delay=10m
- Capacity=4p
- Throughput=0.4PPM

- Delay=30m
- Capacity=30p
- Throughput=1PPM

It really depends on your needs (goals).

- What program to use for measuring performance?
- Benchmarks Suites
 - A set of representative programs that are likely relevant to the user
 - Examples:
 - SPEC CPU 2017: CPU-oriented programs (for desktops)
 - SPECweb: throughput-oriented (for servers)
 - EEMBC: embedded processors/workloads

 How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	10	5	25
Prog-2	5	10	20
Prog-3	25	10	25

 How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	10	5	25
Prog-2	5	10	20
Prog-3	25	10	25

* AM: Arithmetic Mean (good for times and latencies)

 How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	1/10	1/5	1/25
Prog-2	1/5	1/10	1/20
Prog-3	1/25	1/10	1/25

 How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	1/10	1/5	1/25
Prog-2	1/5	1/10	1/20
Prog-3	1/25	1/10	1/25

HM: Harmonic Mean (good for rates and throughput)
n

 How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	10/10	10/5	10/25
Prog-2	5/5	5/10	5/20
Prog-3	25/25	25/10	25/25

 How to capture the behavior of multiple programs with a single number

	Comp-A	Comp-B	Comp-C
Prog-1	10/10	10/5	10/25
Prog-2	5/5	5/10	5/20
Prog-3	25/25	25/10	25/25

* GM: Geometric Mean (good for speedups)

$$\left(\prod_{i=1}^n x_i\right)^{1/n}$$

Processor Performance

- \Box Clock cycle time (CT = 1/clock frequency)
 - Influenced by technology and pipeline
- □ Cycles per instruction (CPI)
 - Influenced by architecture
 - \square IPC may be used instead (IPC = 1/CPI)
- Instruction count (IC)
 - Influenced by ISA and compiler
- \Box CPU time = IC x CPI x CT

Find the average CPI of a load/store machine when running an application that results in the following statistics

Instruction Type	Frequency	Cycles
Load	20%	2
Store	20%	2
Branch	20%	2
ALU	40%	1

Find the average CPI of a load/store machine when running an application that results in the following statistics

Instruction Type	Frequency	Cycles
Load	20%	2
Store	20%	2
Branch	20%	2
ALU	40%	1

CPI = 0.2x2 + 0.2x2 + 0.2x2 + 0.4x1 = 1.6

Find the average CPI of a load/store machine when running an application that results in the following statistics

Instruction Type	Frequency	Cycles
Load	20%	2
Store	20%	2
Branch	20%	2
ALU	40%	1

 50% of the branches can be combined with ALU instructions and executed as Branch-ALU fused in 2 cycles. What is the new average CPI?

Find the average CPI of a load/store machine when running an application that results in the following statistics

Instruction Type	Frequency	Cycles
Load	~22%	2
Store	~22%	2
Branch	~11%	2
ALU	~33%	1
Branch-ALU	~12%	2

 50% of the branches can be combined with ALU instructions and executed as Branch-ALU fused in 2 cycles. What is the new average CPI? CPI = 1.67

Processor Performance

- Points to note
 - Performance = 1 / execution time
 - $\Box AM(IPCs) = 1 / HM(CPIs)$
 - $\Box GM(IPCs) = 1 / GM(CPIs)$

Speedup vs. Percentage

- □ Speedup = old execution time / new execution time
- Improvement = (new performance old performance)/old performance
- My old and new computers run a particular program in 80 and 60 seconds; compute the followings
 - speedup
 - percentage increase in performance
 - percentage reduction in execution time

Speedup vs. Percentage

- □ Speedup = old execution time / new execution time
- Improvement = (new performance old performance)/old performance
- My old and new computers run a particular program in 80 and 60 seconds; compute the followings
 - **u** speedup = $\frac{80}{60} = -1.33$
 - percentage increase in performance = 33%
 - **D** percentage reduction in execution time = 20/80 = 25%

The IPC of a new computer is 20% worse than the old one. Its clock speed is 30% higher than the old one. If running the same binaries on both machines. What speedup is the new computer providing?

The IPC of a new computer is 20% worse than the old one. Its clock speed is 30% higher than the old one. If running the same binaries on both machines. What speedup is the new computer providing?

	OLD	NEW
IPC	1	0.8
Frequency	1	1.3
IC	1	1
CPI	Ś	Ś
СТ	Ś	Ś
CPU Time	Ś	Ś

The IPC of a new computer is 20% worse than the old one. Its clock speed is 30% higher than the old one. If running the same binaries on both machines. What speedup is the new computer providing?

Speedup =	1/0.96 =	1.04
-----------	----------	------

	OLD	NEW
IPC	1	0.8
Frequency	1	1.3
IC	1	1
CPI	1/1	1/0.8 = 1.25
СТ	1/1	1/1.3 = ~0.77
CPU Time	1	~0.96

Principles of Computer Design

- Designing better computer systems requires better utilization of resources
 - Parallelism
 - Multiple units for executing partial or complete tasks
 - Principle of locality (temporal and spatial)
 - Reuse data and functional units
 - Common Case
 - Use additional resources to improve the common case