DRAM CONTROLLER

Mahdi Nazm Bojnordi

Assistant Professor
School of Computing
University of Utah
Overview

- Announcement
 - Homework 4 will be released on Nov. 28th

- This lecture
 - DRAM control
 - DRAM timing
 - DRAM hierarchy
 - Channel, bank
Recall: DRAM System

- DRAM chips can perform basic operations
Recall: DRAM System

- DRAM chips can perform basic operations
Recall: DRAM System

- DRAM chips can perform basic operations
Recall: DRAM Operations

Main DRAM operations are

- **Precharge** bitlines to prepare subarray for activating a wordline
- **Activate** a row by connecting DRAM cells to the bitlines and start sensing
- **Read** the contents of a data block from the row buffer
- **Write** new contents for data block into the row buffer
- **Refresh** DRAM cells
 - can be done through a precharge followed by an activate
DRAM Row Buffer

All reads and writes are performed through RB

- DRAM Cell
 - DRAM Sense Amp.
- Row Access Strobe (RAS)
- Column Access Strobe (CAS)
- Data Array
- Row Buffer (RB)
DRAM Row Buffer

- Row buffer holds a single row of the array
 - A typical DRAM row (page) size is 8KB
- The entire row is moved to row buffer; but only a block is accessed each time
- Row buffer access possibilities
 - **Row buffer hit:** no need for a precharge or activate
 - ~20ns only for moving data between pins and RB
 - **Row buffer miss:** activate (and precharge) are needed
 - ~40ns for an empty row
 - ~60ns for on a row conflict
DRAM Control

- DRAM chips have no intelligence
 - An external controller dictates operations
 - Modern controllers are integrated on CPU
- Basic DRAM timings are
 - t_{CAS}: column access strobe (RD \rightarrow DATA)
 - t_{RAS}: row active strobe (ACT \rightarrow PRE)
 - t_{RP}: row precharge (PRE \rightarrow ACT)
 - t_{RC}: row cycle (ACT \rightarrow PRE \rightarrow ACT)
 - t_{RCD}: row to column delay (ACT \rightarrow RD/WT)
DRAM Control

- DRAM chips have no intelligence
 - An external controller dictates operations
 - Modern controllers are integrated on CPU
- Basic DRAM timings are
 - \(t_{\text{CAS}} \): column access strobe (RD \(\rightarrow \) DATA)
 - \(t_{\text{RAS}} \): row active strobe (ACT \(\rightarrow \) PRE)
 - \(t_{\text{RP}} \): row precharge (PRE \(\rightarrow \) ACT)
 - \(t_{\text{RC}} \): row cycle (ACT \(\rightarrow \) PRE \(\rightarrow \) ACT)
 - \(t_{\text{RCD}} \): row to column delay (ACT \(\rightarrow \) RD/WT)
Enforcing Timing
DRAM Timing Example

- **Access time**
 - **Row hit:** t_{CAS}
 - **Row empty:** $t_{\text{RCD}} + t_{\text{CAS}}$
 - **Row conflict:** $t_{\text{RP}} + t_{\text{RCD}} + t_{\text{CAS}}$
Access time

- Row hit: t_{CAS}
- Row empty: $t_{\text{RCD}} + t_{\text{CAS}}$
- Row conflict: $t_{\text{RP}} + t_{\text{RCD}} + t_{\text{CAS}}$
DRAM Timing Example

- **Access time**
 - Row hit: t_{CAS}
 - Row empty: $t_{\text{RCD}} + t_{\text{CAS}}$
 - Row conflict: $t_{\text{RP}} + t_{\text{RCD}} + t_{\text{CAS}}$
DRAM Timing Example

- **Access time**
 - Row hit: t_{CAS}
 - Row empty: $t_{\text{RCD}} + t_{\text{CAS}}$
 - Row conflict: $t_{\text{RP}} + t_{\text{RCD}} + t_{\text{CAS}}$
DRAM Timing Example

- **Access time**
 - Row hit: t_{CAS}
 - Row empty: $t_{RCD} + t_{CAS}$
 - Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$
DRAM Timing Example

- **Access time**
 - Row hit: \(t_{\text{CAS}} \)
 - Row empty: \(t_{\text{RCD}} + t_{\text{CAS}} \)
 - Row conflict: \(t_{\text{RP}} + t_{\text{RCD}} + t_{\text{CAS}} \)
DRAM Timing Example

- **Access time**
 - Row hit: t_{CAS}
 - Row empty: $t_{RCD} + t_{CAS}$
 - Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$
DRAM Timing Example

- Access time
 - Row hit: t_{CAS}
 - Row empty: $t_{RCD} + t_{CAS}$
 - Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$

Requests
- RD B

Data Array

Requests
- RD B

Row Buffer

Requests
- RD B

Data Array

Requests
- RD B

Data Array

Requests
- RD B
DRAM Timing Example

- **Access time**
 - Row hit: \(t_{\text{CAS}} \)
 - Row empty: \(t_{\text{RCD}} + t_{\text{CAS}} \)
 - Row conflict: \(t_{\text{RP}} + t_{\text{RCD}} + t_{\text{CAS}} \)
DRAM Timing Example

- **Access time**
 - **Row hit:** t_{CAS}
 - **Row empty:** $t_{RCD} + t_{CAS}$
 - **Row conflict:** $t_{RP} + t_{RCD} + t_{CAS}$
DRAM Timing Example

- **Access time**
 - Row hit: t_{CAS}
 - Row empty: $t_{\text{RCD}} + t_{\text{CAS}}$
 - Row conflict: $t_{\text{RP}} + t_{\text{RCD}} + t_{\text{CAS}}$
Access time

- Row hit: t_{CAS}
- Row empty: $t_{\text{RCD}} + t_{\text{CAS}}$
- Row conflict: $t_{\text{RP}} + t_{\text{RCD}} + t_{\text{CAS}}$
Improving Performance

DRAM Channels
Memory Channels

- Memory channels provide fully parallel accesses
- Separate data, control, and address buses
Memory Channels

- Memory channels provide fully parallel accesses
 - Separate data, control, and address buses
Memory Channels

- Memory channels provide fully parallel accesses
 - Separate data, control, and address buses
Memory Channels

- Memory channels provide fully parallel accesses
 - Separate data, control, and address buses

Not scalable due to pin overhead
Improving Performance

DRAM Ranks
Memory Banks

- Memory banks provide parallel operations
 - Shared data, control, and address buses
- The goal is to keep the data bus fully utilized
Memory Banks

- Memory banks provide parallel operations
 - Shared data, control, and address buses
- The goal is to keep the data bus fully utilized
Memory Banks

- Memory banks provide parallel operations
 - Shared data, control, and address buses
- The goal is to keep the data bus fully utilized
Memory Banks

- Memory banks provide parallel operations
 - Shared data, control, and address buses
- The goal is to keep the data bus fully utilized

Shorter data transfer time to reduce bus conflicts
Double data rate vs. single rate
DRAM Organization

- DRAM channels are independently accessed through dedicated data, address, and command buses
 - Physically broken down into DIMMs (dual in-line memory modules)
 - Logically divided into ranks, which are a collection of DRAM chips responding to the same memory request