INSTRUCTION LEVEL PARALLELISM

Mahdi Nazm Bojnordi
Assistant Professor
School of Computing
University of Utah
Performance vs. Pipeline Depth

- Impact of stall cycles on performance
 - Independent instructions
 - Dependent instructions

\[
\frac{1}{\text{latch latency}}
\]

![Graph showing performance vs. pipeline depth with and without stalls.](chart.png)
Performance vs. Pipeline Depth

- Impact of stall cycles on performance
 - Independent instructions
 - Dependent instructions

\[\frac{1}{latch \ latency} \]

![Graph showing Performance vs. Pipeline Depth](image)
Performance vs. Pipeline Depth

- Impact of stall cycles on performance
 - Independent instructions
 - Dependent instructions

\[
\frac{1}{latch \ latency}
\]

Increase overlap among instructions in the pipeline (Instruction Level Parallelism)

Performance vs. Pipeline Depth (number of stages)
Instruction Level Parallelism

- Potential overlap among instructions
 - A property of the program dataflow

Code 1

- ADD R1, R2, R3
- SUB R4, R1, R5
- XOR R6, R4, R7
- AND R8, R6, R9

ILP = 1
Fully serial

Code 2

- ADD R1, R2, R3
- SUB R4, R6, R5
- XOR R8, R2, R7
- AND R9, R6, R0

ILP = 4
Fully parallel
Instruction Level Parallelism

- Potential overlap among instructions
 - A property of the program dataflow
 - Influenced by compiler

Code 1:

```
ADD  R5, R1, R2
ADD  R5, R5, R3
ADD  R5, R5, R4
```

\[X \leftarrow A + B + C + D \]
Instruction Level Parallelism

- Potential overlap among instructions
 - A property of the program dataflow
 - Influenced by compiler

\[X \leftarrow A + B + C + D \]

Code 1:
- ADD R5, R1, R2
- ADD R5, R5, R3
- ADD R5, R5, R4

Average ILP = 3/3 = 1
Five registers

Code 2:
- ADD R6, R1, R2
- ADD R7, R3, R4
- ADD R5, R6, R7

Average ILP = 3/2 = 1.5
Seven registers
Instruction Level Parallelism

- Potential overlap among instructions
 - A property of the program dataflow
 - Influenced by compiler
- An upper limit for attainable IPC for a given code
 - IPC represents exploited ILP

```
ADD  R5, R1, R2
ADD  R5, R5, R3
ADD  R5, R5, R4
ADD  R6, R1, R2
ADD  R7, R3, R4
ADD  R5, R6, R7
```

Average ILP = $\frac{3}{3} = 1$
Five registers

Average ILP = $\frac{3}{2} = 1.5$
Seven registers
Instruction Level Parallelism

- Potential overlap among instructions
 - A property of the program dataflow
 - Influenced by compiler
- An upper limit for attainable IPC for a given code
 - IPC represents exploited ILP
- Can be exploited by HW-/SW-intensive techniques
 - Dynamic scheduling in hardware
 - Static scheduling in software (compiler)