INTERCONNECTION NETWORKS

Mahdi Nazm Bojnordi
Assistant Professor
School of Computing
University of Utah
Overview

- Upcoming deadline
 - Feb. 1st: project group formation
 - Only two groups have sent me emails!

- This lecture
 - Basics of the interconnection networks
 - Network topologies
 - Flow control
Where Interconnects Are Used?

- About 60% of the dynamic power in modern microprocessors is dissipated in on-chip interconnects

- Analysis subject: Processor, 0.13 [μm]
- 77 million transistors, die size of 88 [mm²]
- Data sources (AF, Capacitance, Length)
- Excluded: L2 cache, global clock, analog units

[Maggen’04]

- Six processor cores
- 8MB Last level cache

[Intel Core i7]
Interconnection Networks

- Goal: transfer maximum amount of information with the minimum time and power

- Connects processors, memories, caches, and I/O devices
Types of Interconnection Networks

- Four domains based on number and proximity of devices
 - **On-chip networks (OCN or NOC)**
 - Microarchitectural elements: cores, caches, reg. files, etc.
 - **System/storage area networks (SAN)**
 - Computer subsystems: storage, processor, IO device, etc.
 - **Local area networks (LAN)**
 - Autonomous computer systems: desktop computers etc.
 - **Wide area networks (WAN)**
 - Interconnected computers distributed across the globe
Basics of Interconnection Networks

- Network topology
 - How to wire switches and nodes in the network

- Routing algorithm
 - How to transfer a message from source to destination

- Flow control
 - How to control the flow messages within the network
Network Topology
Network Topologies

- Regular vs. irregular graphs
 - Examples of regular networks are mesh and ring

- Distances in the network
 - Routing distance: number of links/hops along a route
 - Network diameter: maximum number of hops per route
 - Average distance: average number of links/hops across all valid routes
Example Topologies

- **Bus**
 - Simple structure; efficient for small number of nodes
 - Not scalable; highly contended
 - Used in many processors
Example Topologies

- Crossbar
 - Complex arbitration
 - High throughput and fast
 - Requires a lot of resources
 - Used in Sun Niagara I/II

![Diagram of UltraSPARC T1 with example topologies](image)
Example Topologies

- Segmented crossbar
 - Reduce switching capacitance (~15-30%)
 - Need a few additional signals to control tri-states

(a) A 4×4 matrix crossbar. (b) A 4×4 segmented crossbar with 2 segments per line.

[Wang’03]
Example Topologies

- **Goal:** Optimize for the common case
 - Straight-through traffic does not go thru tristate buffers

- Some combinations of turns are not allowed
 - Why?

Read the paper for details.

(a) A 4×4 cut-through crossbar. [Wang’03]
Example Topologies

- Express channels to reduce number of hops
 - like taking the freeway

[Wang’03]
Example Topologies

- **Ring**
 - Cheap; long latency
 - IBM Cell

- **Mesh**
 - Path diversity, efficient
 - Tilera 100-core

- **Torus**
 - More path diversity
 - Expensive and complex
Example Topologies

- **Tree**
 - Simple and low cost
 - Easy to layout
 - Efficiently handles local traffic
 - Towards root, links are heavily contended
Example Topologies

- Omega network
 - Single path from source to destination
 - Does not support all possible permutations
 - Proposed to replace costly crossbars as processor-memory interconnect

[Fig. 2. Omega-network (N = 8).]

[Gottlieb’82]
Flow Control
Sending Data in Network

- **Circuit switching**
 - Establish full path; then send data
 - Everyone else using the same link has to wait
 - Setup overheads

- **Packet switching**
 - Route individual packets (via different paths)
 - More flexible than CS
 - May be slower than CS
Handling Contention

Problem
- Two packets want to use the same link at the same time

Possible solutions
- Drop one
- Misroute one (deflection)
- Buffer one
Circuit Switching Example

- Significant latency overhead prior to data transfer
- Other requests forced to wait for resources

[Lipasti]
Store and Forward Example

- High per-hop latency
- Larger buffering required

[Lipasti]
Virtual Cut Through Example

- Lower per-hop latency
- Larger buffering required

[Lipasti]
Wormhole Example

- Red holds this channel: channel remains idle until read proceeds.
- Channel idle but red packet blocked behind blue.
- Buffer full: blue cannot proceed.
- Blocked by other packets.

Allocating buffers on a flit-basis

[Lipasti]
Virtual Channel Example

Multiple flit queues per input port

Buffer full: blue cannot proceed

Blocked by other packets
Virtual Channel Buffers

- Single buffer per input
- Multiple fixed length queues per physical channel

[Lipasti]