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Abstract

We consider the online linear optimization problem, where at every step the algo-
rithm plays a point xt in the unit ball, and suffers loss 〈ct, xt〉 for some cost vector
ct that is then revealed to the algorithm. Recent work showed that if an algorithm
receives a hint ht that has non-trivial correlation with ct before it plays xt, then it

can achieve a regret guarantee of O(log T ), improving on the bound of Θ(
√
T ) in

the standard setting. In this work, we study the question of whether an algorithm
really requires a hint at every time step. Somewhat surprisingly, we show that an

algorithm can obtainO(log T ) regret with justO(
√
T ) hints under a natural query

model; in contrast, we also show that o(
√
T ) hints cannot guarantee better than

Ω(
√
T ) regret. We give two applications of our result, to the well-studied setting

of optimistic regret bounds and to the problem of online learning with abstention.

1 Introduction

There has been a spate of work on improving the performance of online algorithms with the help of
externally available hints. The goal of these works is to circumvent worst-case bounds and exploit
the capability of machine-learned models that can potentially provide these hints. There have been
two main lines of study. The first is for combinatorial problems, where the goal has been to be
improve the competitive ratio of online algorithms; problems considered here include ski-rental [9,
17], caching [13, 19, 26], scheduling [1, 12, 17, 22], matching [16, 18], etc. The second is in the
learning theory setting, where the goal has to been to improve the regret of online optimization
algorithms. A series of recent papers showed how to achieve better regret guarantees, assuming that
we have a hint about the cost function before the algorithm makes a choice. For many variants of
the online convex optimization problem, works such as [25, 8, 2, 3] studied the power of having
prior information about a cost function. Works such as [29] have also studied improved regret
bounds in partial information or bandit settings. In all these works, a desirable property is to ensure
consistency, which demands better performance with better quality hints, and robustness, which
guarantees a certain level of performance with poor quality or even adversarially bad hints.

Recall the standard online optimization model [30], which is a game between an algorithm and an
adversary. In each round, the algorithm plays a point and the adversary responds with a cost function
that is visible to the algorithm, and the cost in this round is measured by evaluating the cost function
on the played point. In online linear optimization, the cost function is linear. The regret of an
algorithm is the worst-case difference between the cost of the algorithm and the cost of an algorithm
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that plays a fixed point in each round. A natural way to incorporate hints or prior information is to
give the algorithm access to a hint about the cost function at a given round before it chooses a point
to play at that round. In this sense, hints are present gratis [25].

The availability of a hint in each round seems natural in some settings, e.g., when cost functions
change gradually with time [25, 4]). However, it can be prohibitive in many others, for instance,
if hints are obtained by using expensive side information, or if they are generated by a running a
computationally expensive ML model. Furthermore, hints can also be wasteful when the problem
instance, or even a large sub-instance, is such that the algorithm cannot really derive any substantial
benefit from their presence. This leads to the question of strengthening the online learning with
hints model by making it parsimonious. In this work, we pursue this direction, where we offer the
algorithm the flexibility to choose to ask for a hint before it plays the point. It then becomes an onus
on the algorithm to know when to ask for a hint and how to use it judiciously, while ensuring both
consistency and robustness. The performance of such an algorithm is measured not only by its regret
but also by the number of hints it uses.

Our contributions. We now present a high level summary of our results. For ease of exposition,
we will defer the formal statements to the respective sections. All our results are for the problem of
online linear optimization (OLO) when the domain is the unit ℓ2 ball; the cost function at every step
is defined using a cost vector ct (and the cost or loss is the inner product of the point played with
ct). We call a hint perfect if it is the same as the cost vector at that time step, good if it is weakly
correlated with the cost vector, and bad otherwise.

As our main result, we show that for OLO in which hints are guaranteed to be good whenever the
algorithm asks for a hint, there is an efficient randomized algorithm that obtains O(log T ) regret

using only O(
√
T ) hints. We extend our result to the case when |B| hints can be bad (chosen in an

oblivious manner, as we will discuss later), and give an algorithm that achieves a regret bound of

O(
√

|B| logT ), while still asking for O(
√
T ) hints. It is interesting to contrast our result with prior

work: Dekel et al. [8] obtained an algorithm with O(log T ) regret, when a good hint is available in

every round. Bhaskara et al. [2] made this result robust, obtaining a regret bound of O(
√

|B| logT ),
when there are |B| bad hints. Our result improves upon these works by showing the same asymptotic

regret bounds, but using only O(
√
T ) hints. Our result also has implications for optimistic regret

bounds [25] (where we obtain the same results, but with fewer hints) and for online learning with
abstention [24] (where we can bound the number of abstentions).

We also show two lower bounds that show the optimality of our algorithm. The first is regarding the
minimum number of hints needed to getO(log T ) regret: we show that any (potentially randomized)

algorithm that uses o(
√
T ) hints will suffer a regret of Ω(

√
T ). The second and more surprising

result is the role of randomness: we show that any deterministic algorithm that obtains O(log T )
regret must use Ω(T/ log(T )) hints, even if each of them is perfect. This shows the significance of
having a randomized algorithm and an oblivious adversary.

Finally we extend our results to the unconstrained OLO setting (see Section 6), where we design a

deterministic algorithm to obtain O(log3/2 T ) regret (suitably defined for the unconstrained case)
when all hints are good, and a randomized algorithm to obtain O(log T ) regret, which can be ex-
tended to the presence of bad hints.

There are three aspects of our results that we find surprising. The first is even the possibility of
obtainingO(log T ) regret using only a sublinear number of hints. The second is the sharp threshold
on the number of hints needed to obtain logarithmic regret; the regret does not gracefully degrade

when the number of hints is below O(
√
T ). The third is the deterministic vs randomized separation

between the constrained and the unconstrained cases, when all queried hints are good.

We now present some intuition why our result is plausible. Consider the standard “worst-case”
adversary for OLO: random mean-zero costs. This case is “hard” because the learner achieves zero

expected cost, but the competitor achieves −
√
T total cost. However, if we simply play a hint −ht

on O(
√
T/α) rounds, each such round incurs−α cost, which is enough to cancel out the

√
T regret

while making only O(
√
T ) hint queries. Thus, the standard worst-case instances are actually easy

with hints. More details on this example and an outline of our algorithm are provided at the start of
Section 3.
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Organization. Section 2 provides the necessary background. The main algorithm and analysis for
the constrained OLO case are in Section 3. The extensions and applications of this can be found in
Section 4. Section 5 contains the lower bounds and Section 6 contains the algorithms and analyses
for the unconstrained case. All missing proofs are in the Supplementary Material.

2 Preliminaries

Let ‖ · ‖ denote the ℓ2-norm and B
d = {x ∈ R

d | ‖x‖ ≤ 1} denote the unit ℓ2 ball in R
d. We use

the compressed sum notation and use c1:t to denote
∑t

i=1 ci and ‖c‖21:t to denote
∑t

i=1 ‖ci‖2. Let
~c = c1, . . . , cT be a sequence of cost vectors. Let [T ] = {1, . . . , T }.
OLO problem and Regret. The constrained online linear optimization (OLO) problem is modeled
as a game over T rounds. At each time t ∈ [T ], an algorithmA plays a vector xt ∈ B

d, and then an

adversary responds with a cost vector ct ∈ B
d. The algorithm incurs cost (or loss) 〈xt, ct〉 at time t.

The total cost incurred by the algorithm is costA(~c) =
∑T

t=1〈xt, ct〉. The regret of the algorithmA
with respect to a ‘comparator’ or benchmark vector u ∈ B

d is

RA(u,~c) = costA(~c)− costAu(~c) =
T
∑

t=1

〈xt − u, ct〉,

whereAu is the algorithm that always plays u at every time step. The regret of an algorithmA is its
worst-case regret with respect to all u ∈ B

d:

RA(~c) = sup
u∈Bd

RA(u,~c).

Hints and query cost. Let α > 0 be fixed and known. In this paper we consider the OLO setting
where, at any round t before choosing xt, an algorithm A is allowed to obtain a hint ht ∈ B

d. If
〈ht, ct〉 ≥ α‖ct‖2, we say that the hint is α-good. If A opts to obtain a hint at time t, then it incurs
a query cost of α‖ct‖2; the query cost is 0 if no hint was obtained at time t. The definition of regret
stays the same and we denote it by RA,α(·). The total query cost of A is given by QA,α(~c) =
∑T

t=1 1t · α‖ct‖2 where 1t is an indicator function used to denote whether A queried for a hint
at time t. Note that the algorithm does not actually know the query cost for a round until the end
of the round. If A is a randomized algorithm, the notions of expected regret and expected query
cost follow naturally. We consider the setting when the adversarial choice of the hint ht and cost
vector ct at time t is oblivious to whether the algorithm queries for a hint at time t but can depend
adaptively on all previous decisions.

More generally, we consider the case that some subset of the hints are “bad” in the sense that
〈ct, ht〉 < α‖ct‖2; we let B denote the set of such indices t. Although we assume α is known
to our algorithms, we do not assume any information about B. Further, our algorithm is charged
α‖ct‖2 for querying a hint even if the hint was bad.

3 Main algorithm

Intuition and outline. The high-level intuition behind our algorithm is the following: suppose for
a moment that α = 1/2 and each hint is α-correlated with the corresponding cost. Now suppose
the cost vectors c1, . . . , cT are random unit vectors, as in the standard tight example for FTRL. In

this case, if an algorithm were to make a hint query for the first 4
√
T steps, set xt = −ht in those

steps, and play FTRL subsequently, then the cost incurred by the algorithm will be less than −2
√
T

in the first 4
√
T steps, and 0 (in expectation) subsequently. On the other hand, for random vectors,

we have ‖c1:T ‖ ≤ 2
√
T with high probability, and thus the best vector in hindsight achieves a total

cost −‖c1:T ‖ ≥ −2
√
T . Thus the algorithm above actually incurs regret≤ 0.

It turns out that the key to the above argument is ‖c1:T ‖ being small. In fact, suppose that ct are unit

vectors, and assume that ‖c1:T ‖ ≤ T/4. Now, suppose the algorithm makes a hint query at 10
√
T

random indices, sets xt = −ht in those steps, and uses FTRL in the other steps. One can show that

the cost incurred by the algorithm is −5
√
T plus the cost of the FTRL steps. Since the cost in the

3



FTRL steps is within
√
T of the cost incurred by the competitor u, we can show that the regret is

once again ≤ 0. The missing subtlety here is accounting for the cost of u on the query steps, but
using the bound on ‖c1:T ‖, this can be adequately controlled if the queries are done at random.

The above outline suggests that the difficult case is ‖c1:T ‖ being large. However, it turns out that
prior work of Huang et al. [11] showed that when the domain is the unit ball, FTL achieves logarith-
mic regret if we have ‖c1:t‖ ≥ Ω(t) for all t.

Our algorithm can be viewed as a combination of the two ideas above. If we could identify the
largest round S for which ‖c1:S‖ is small, then we can perform uniform sampling until round S and
use FTL subsequently, and hope that we have logarithmic regret overall (although it is not obvious
that the two bounds compose). The problem with this is that we do not know the value of S. We
thus view the problem of picking a sampling probability as a one-dimensional OLO problem in itself,
and show that an online gradient descent (OGD) algorithm achieves low regret when compared to all
sequences that have the structure of being δ until a certain time and 0 thereafter (which captures the
setting above). The overall algorithm thus picks the querying probability using the OGD procedure,
and otherwise resorts to FTRL, as in the outline above.

We now present the details of the overall algorithm (Section 3.3) and the two main subroutines it
uses (Sections 3.1 and 3.2).

3.1 A sharper analysis of FTRL

In this section we consider the classic adaptive Follow the Regularized Leader (FTRL) algorithm
Aftrl (Algorithm 1) and show a regret bound that is better than the usual one, if the length of the
aggregate cost vector grows “rapidly” after a certain initial period.

For convenience, let σt = ‖ct‖2. Define the regularizer terms as r0 = 1 and for t ≥ 1, let

rt =
√
1 + σ1:t −

√

1 + σ1:t−1. (1)

By definition, we have r0:t =
√
1 + σ1:t. Furthermore, we have rt < 1 for all t, since σt = ‖ct‖2 ≤

1. The FTRL algorithmAftrl then plays the points x1, x2, . . . , which are defined as

xt+1 = argmin
‖x‖≤1

{

〈c1:t, x〉+
r0:t
2
‖x‖2

}

. (2)

Algorithm 1 Adaptive FTRL Aftrl.

x1 ← 0, r0 ← 1
for t = 1, . . . , T do

Play point xt
Receive cost ct
r0:t ←

√

1 + ‖c‖21:t
xt+1 ← argmin

‖x‖≤1

{

〈c1:t, x〉+
r0:t
2
‖x‖2

}

end for

Algorithm 2 OGD with shrinking domainAogd.

Require: Parameter λ
p1 ← 0, D1 ← [0, 1]
for t = 1, . . . , T do

Play point pt
Receive cost zt and σt ≤ 1
{σt will eventually be set to ‖ct‖2}
Dt ← [0,min(1, λ√

1+σ1:t
)]

ηt ← λ
1+σ1:t

pt+1 ← ΠDt (pt − ηtzt), where ΠDt is the
projection to the interval

end for

We will show that Aftrl satisfies the following refined regret guarantee:

Theorem 3.1. Consider Aftrl on a sequence ct of cost vectors and let α ∈ (0, 1) be any parameter.

Suppose that S is an index such that for all t > S, ‖c1:t‖ ≥ α
4 (1 + σ1:t) (recall σt = ‖ct‖2). Then,

1. For all N ∈ [T ] and for any ‖u‖ ≤ 1, we have

N
∑

t=1

〈ct, xt − u〉 ≤ 4.5
√
1 + σ1:N .
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2. For the index S defined above, we have the refined regret bound:

RAftrl
(~c) ≤

√
1 + σ1:S

2
+

18 + 8 log(1 + σ1:T )

α
+ ‖c1:S‖+

S
∑

t=1

〈ct, xt〉. (3)

Part (1) of the theorem follows from the standard analysis of FTRL; we include the proof in Ap-
pendix B.1 for completeness. Part (2) is a novel contribution, where we show that if ‖c1:t‖ grows
quickly enough, then the “subsequent” regret is small. It can be viewed as a generalization of a
result of Huang et al. [11], who proved such a regret bound for S = 0.

3.2 Switch-once dynamic regret

In this section we show a regret bound against all time-varying comparators of a certain form. More
formally, we consider the one-dimensional OLO problem where the costs are zt and λ ≥ 1 is
a known parameter. We also assume that at time t, the algorithm is provided with a parameter
σt ∈ [0, 1] that will give some extra information about the sequence of comparators of interest.
Thus the modified OLO game can be described as follows:

• For t = 1, 2, . . . , the algorithm first plays pt ∈ [0, 1], and then zt, σt are revealed.
• zt always satisfies z2t ≤ 4σt.
• We wish to minimize the regret with respect to a class of comparator sequences (qt)

T
t=1

(defined below), i.e., minimize
∑

t zt(pt − qt) over all sequences in the class.

We remark that for the purposes of this subsection, we can think of σt as z2t . (The more general
setup is needed when we use this in Algorithm 3.)

Definition 3.2 (Valid-in-hindsight sequences). We say that a sequence (qt)
T
t=1 is valid in hindsight

if there exists an S ∈ [T ] and a δ ∈ [0, 1] such that

1. qt = δ for all t ≤ S and qt = 0 for t > S.

2. At the switching point, we have δ2 ≤ λ2

1+σ1:S
.

We now show that a variant of online gradient descent (OGD) with a shrinking domain achieves low
regret with respect to all valid-in-hindsight sequences; we call thisAogd (see Algorithm 2).

Theorem 3.3. Let λ ≥ 1 be a given parameter, and (zt)
T
t=1 be any sequence of cost values satisfying

z2t ≤ 4σt. Let (qt)
T
t=1 be a valid-in-hindsight sequence. The points pt produced byAogd then satisfy:

T
∑

t=1

zt(pt − qt) ≤ λ (1 + 3 log(1 + σ1:T )) .

3.3 Full algorithm

In this section we present the full algorithm that utilizes the above two ingredients.

Algorithm 3 Algorithm with hintsAhints.

Require: Parameter α
Initialize an instance of Aftrl and an instance ofAogd with parameter λ = 10/α
for t = 1, . . . , T do

Receive pt fromAogd; Receive xt fromAftrl

With probability pt, get a hint ht and play x̂t = −ht; otherwise, play x̂t = xt
Receive ct
Send ct to Aftrl as tth cost; Send zt = −α‖ct‖2 − 〈ct, xt〉 and σt = ‖ct‖2 to Aogd

end for

Theorem 3.4. When B = ∅,

E[RAhints,α(~c)] ≤
78 + 38 log(1 + ‖c‖21:T )

α
and E[QAhints,α(~c)] ≤ 20

√

‖c‖21:T .
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Proof. Let us first bound the expected cost of querying the hints. From the description of Aogd

(Algorithm 2), because of the shrinking domain, we have pt ≤ |Dt−1| ≤ 10

α
√

1+σ1:t−1

. At time t,

the expected query cost paid by the algorithm is pt · α ‖ct‖2. Using the above, we can bound this as

T
∑

t=1

ptα ‖ct‖2 ≤
T
∑

t=1

10σt√
1 + σ1:t−1

≤
T
∑

t=1

10σt√
σ1:t
≤ 20

√
σ1:T = 20

√

‖c‖21:T ,

where the last inequality follows from concavity of the square root function (e.g., [20, Lemma 4]).

Now we proceed to the more challenging task of bounding the expected regret. We start by noting
that the expected loss on any round t is simply E[〈ct, x̂t〉] = −pt〈ct, ht〉+(1−pt)〈ct, xt〉. Therefore
the expected regret for a fixed u is:

T
∑

t=1

E[〈ct, x̂t − u〉] =
T
∑

t=1

pt〈ct,−ht − xt〉+ 〈ct, xt − u〉 ≤
T
∑

t=1

pt(−α‖ct‖2 − 〈ct, xt〉) + 〈ct, xt − u〉,

where we have used the fact that the hint ht is α-good. The main claim is then the following.

Lemma 3.5. For the choice of pt, xt defined in Ahints (Algorithm 3), we have

T
∑

t=1

pt(−α‖ct‖2−〈ct, xt〉)+ 〈ct, xt−u〉 ≤
78 + 38 log(1 + ‖c‖21:T )

α
= O

(

1 + log(1 + σ1:T )

α

)

.

Assuming this, the bound on expected regret easily follows, completing the proof.

We now focus on proving Lemma 3.5.

Proof of Lemma 3.5. The key idea is to prove the existence of a valid-in-hindsight sequence (qt)
T
t=1

(Definition 3.2) such that when pt on the LHS is replaced with qt, the sum is O(log(T )/α). The
guarantee of Algorithm 2 (i.e., Theorem 3.3) then completes the proof. Specifically, since we set
λ = 10/α and zt = (−α‖ct‖2 − 〈ct, xt〉), Theorem 3.3 guarantees that for any valid-in-hindsight
sequence (qt)

T
t=1, we have:

T
∑

t=1

pt(−α‖ct‖2 − 〈ct, xt〉) + 〈ct, xt − u〉

≤
T
∑

t=1

qt(−α‖ct‖2 − 〈ct, xt〉) + 〈ct, xt − u〉+
10

α

(

1 + 3 log(1 + ‖c‖21:T )
)

. (4)

Let us define S to be the largest index in [T ] such that ‖c1:S‖ ≤ α
4 (1 + σ1:S). Firstly, by Theorem

3.1 (part 2), for any such index S we have:

T
∑

t=1

〈ct, xt − u〉 ≤
√
1 + σ1:S

2
+

18 + 8 log(1 + σ1:T )

α
+ ‖c1:S‖+

S
∑

t=1

〈ct, xt〉. (5)

Let ∆ :=
√
1+σ1:S

2 +‖c1:S‖+
∑S

t=1〈ct, xt〉 denote the “excess” over the logarithmic term. Note that

by Theorem 3.1 (part 1), for a vector u = −c1:S
‖c1:S‖ , we have ‖c1:S‖+

∑S
t=1〈ct, xt〉 =

∑S
t=1〈ct, xt −

u〉 ≤ 4.5
√
1 + σ1:S . Thus, we have ∆ ≤ 5

√
1 + σ1:S .

Now, note that if 1 + σ1:S ≤ 100
α2 , we have 5

√
1 + σ1:S ≤ 50/α. Thus, by setting qt = 0 for all

t (which is clearly valid-in-hindsight), the proof follows. Further, if ∆ ≤ 1, then clearly we can
again set qt = 0 for all t to complete the proof. Thus, we assume in the remainder of the proof that
1 + σ1:S >

100
α2 and ∆ > 1.

Our goal now is to construct a valid-in-hindsight switch-once sequence that has value qt = δ ∈ [0, 1]
for t ≤ S and qt = 0 for t > S such that we also have :

δ

(

S
∑

t=1

ασt + 〈ct, xt〉
)

≥ 5
√
1 + σ1:S . (6)
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First, let us understand the term in the parentheses on the LHS above. We bound this using the
following claim.

Claim. α · σ1:S +
∑

t≤S〈ct, xt〉 ≥ α
2 (1 + σ1:S).

Proof of claim. Suppose that we have
∑

t≤S〈ct, xt〉 < α
2 (1− σ1:S). By definition of S, we have

∆ =

√
1 + σ1:S

2
+ ‖c1:S‖+

S
∑

t=1

〈ct, xt〉 ≤
√
1 + σ1:S

2
+
α

4
(1 + σ1:S) +

α

2
(1− σ1:S)

=

√
1 + σ1:S

2
− α

4
(1 + σ1:S) + α.

From our assumption that
√
1 + σ1:S ≥ 10

α , the RHS above is≤ α, which in turn is at most 1. Since
we assumed ∆ > 1, this is a contradiction so the claim holds.

Thus in order to satisfy (6), we simply choose

δ =
10

α
√
1 + σ1:S

.

By assumption, this lies in [0, 1], and further, for λ = 10/α, the (qt) defined above is a valid-in-
hindsight sequence. Combining the fact that ∆ ≤ 5

√
1 + σ1:S with (6), we have that

T
∑

t=1

qt(−α‖ct‖2 − 〈ct, xt〉) + 〈ct, xt − u〉 ≤
18 + 8 log(1 + σ1:T )

α
.

Now appealing to the guarantee of Theorem 3.3 as discussed earlier, we can replace qt with pt by
suffering an additional logarithmic term on the RHS. Combining all these cases completes the proof
of Lemma 3.5, and thus also the proof of Theorem 3.4.

4 Extensions and applications

In the following subsections, we extend the analysis of Algorithm 3 to disparate settings: we con-
sider robustness to uninformative or “bad” hints, the more classical “optimistic” regret setting, and
online learning with abstention.

4.1 Bad hints

First, we extend Theorem 3.4 to consider the case B 6= ∅ by carefully accounting for the regret
incurred during rounds where t ∈ B and making crucial use of the shrinking domainDt.

Theorem 4.1. For any B,

E[RAhints,α(~c)] ≤
78 + 38 log(1 + ‖c‖21:T )

α
+ 40

√

∑

t∈B
‖ct‖2 +

20

α

√

∑

t∈B
‖ht‖2

√

log(1 + ‖c‖21:T )

= O

(

√

|B| logT
α

)

, and E[QAhints,α(~c)] ≤ 20
√

‖c‖21:T .

4.2 Optimistic bounds

Next, we show that our results have implications for optimistic regret bounds (e.g., [10, 6, 25, 27,

23]). The standard optimistic regret bound takes the form O(

√

∑T
t=1 ‖ct − ht‖2). We will show

that the same result can be obtained (up to logarithmic factors) even while only looking at O(
√
T )

hints. The approach is very simple: if we set α = 1
4 , then a little calculation shows that for t ∈ B,

‖ct‖2 + ‖ht‖2 = O(‖ct − ht‖2), so that Theorem 4.1 directly implies the desired result.
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Theorem 4.2. Set α = 1
4 . Then

E[RAhints,α(~c)] ≤ 312 + 152 log(1 + ‖c‖21:T ) + 80

(

1 +
√

log(1 + ‖c‖21:T )
)√

∑

t∈B
‖ct − ht‖2

= O



log(T ) +

√

√

√

√

T
∑

t=1

‖ct − ht‖2 log(T )



 , and E[QAhints,α(~c)] ≤ 20
√

‖c‖21:T .

4.3 Online learning with abstention

Finally, we apply our algorithm to the problem of online learning with abstentions. In this variant
of the OLO game, instead of being provided with hints, the learner is allowed to “abstain” on any
given round. When the learner abstains, it receives a loss of −α‖ct‖2 for some known α but pays
a query cost of α‖ct‖2. The regret is again the total loss suffered by the learner minus the total
loss suffered by the best fixed adversary, which does not abstain. This setting is very similar to the
scenario studied by [24] in the expert setting, but in addition to moving from the simplex to the unit
ball, we ask for a more detailed guarantee from the learner: it is not allowed to abstain too often,
as measured by the query cost. In this setting, our Algorithm 3 works essentially out-of-the-box:
every time the algorithm queries a hint, we instead simply choose to abstain. This procedure then
guarantees:

Theorem 4.3. In the online learning with abstention model, the variant of Algorithm 3 that abstains
whenever the original algorithm would ask for a hint guarantees expected regret at most:

78 + 38 log(1 + ‖c‖21:T )
α

= O

(

1 + log(1 + σ1:T )

α

)

.

Further, the expected query cost is at most 20
√

‖c‖21:T .

Proof. Since we abstain with probability pt and otherwise play xt, the expected regret is
∑T

t=1−ptα‖ct‖2 + (1− pt)〈ct, xt〉 − 〈ct, u〉. Thus the regret bound follows directly from Lemma
3.5. The query cost bound follows the identical argument as Theorem 3.4.

5 Lower bounds

In this section we first show that the regret bound obtained in Theorem 3.4 is essentially tight. Next,
we show that randomness is necessary in our algorithms.

Theorem 5.1. Let α ∈ (0, 1] be any parameter, and suppose A is an algorithm for OLO with hints

that makes o
(√

T
α

)

hint queries. Then there exists a sequence of cost vectors ct and hints ht of unit

length, such that (a) in any round t where a hint is asked, 〈ct, ht〉 ≥ α ‖ct‖2, and (b) the regret of A
on this input sequence is Ω(

√
T ).

Proof. We will construct a distribution over inputs {ct, ht} and argue that any deterministic al-

gorithm has an expected regret Ω(
√
T ) for inputs drawn from this distribution. By the minmax

theorem, we then have a lower bound for any (possibly randomized) algorithmA.

We consider two-dimensional inputs. At each step, ht is chosen to be a uniformly random vector

on the unit circle (in R
2). The cost ct is set to be αht ±

√
1− α2 h⊥t , where h⊥t is a unit vector

orthogonal to ht, and the sign is chosen uniformly at random. Now for any deterministic algorithm,
if A queries ht at time t, then it can play a point aht + bh⊥t , for scalars a, b. In expectation, this
has inner product aα with ct, and thus the expected cost incurred by A in this step is ≥ −α (since
|a| ≤ 1). If A does not query ht, then ct is simply a random unit vector, and thus the expected cost
incurred by A in this step is 0.

Next, consider the value min‖u‖≤1

∑

t〈ct, u〉, i.e., the best cost in hindsight; this is clearly

−‖∑t ct‖. By construction, ct is a uniformly random vector on the unit circle in R
2 (and the

8



choices are independent for different t). Thus we have E[‖∑t ct‖] ≥ Ω(
√
T ). (This follows from

properties of sums of independent random unit vectors; see Supplementary Material for a proof.)

Thus, if the algorithm makes K queries, then the expected regret is at least −Kα + Ω(
√
T ). This

quantity is Ω(
√
T ) as long as K = o

(√
T
α

)

, thus completing the proof.

We next show that for deterministic algorithms, making O(
√
T ) hint queries is insufficient for ob-

taining o(
√
T ) regret, even if the hints provided are always 1-good (i.e., hints are perfect).

Theorem 5.2. LetA be any deterministic algorithm for OLO with hints that makes at most C
√
T <

T/2 queries, for some parameter C > 0. Then there is a sequence cost vectors ct and hints ht of
unit length such that (a) ht = ct whenever A makes a hint query, and (b) the regret of A on this

input sequence is at least
√
T

2(1+C) .

We remark that by setting C appropriately, we can also show that for a deterministic algorithm to

achieve logarithmic regret, it needs to make Ω
(

T
log T

)

queries.

6 Unconstrained setting

Algorithm 4 Algorithm with hints (unconstrained case).

Require: Parameters ǫ, α, K , d-dimensional unconstrained OLO algorithmAunc, one-dimensional
unconstrained OLO algorithmAunc-1D guaranteeing (7)
for t = 1, . . . , T do

{Randomized version} 1t ← 1 with probability min

(

1, K

α
√

1+‖c‖2
1:t−1

)

; 0 otherwise.

{Deterministic version} 1t ← 1 iff 1 +
∑t−1

τ=1 iτ 〈cτ , hτ 〉 ≤ K
√

1 + ‖c‖21:t−1.

Receive wt ∈ R
d from Aunc; Receive yt ∈ R fromAunc-1D.

If 1t = 1, get hint ht
Play xt = wt − 1thtyt; Receive cost ct.
Send ct to Aunc as tth cost; Send gt = −1t〈ht, ct〉 ∈ R to Aunc-1D as tth cost.

end for

In this section, we consider unconstrained online learning in which the domain is all of Rd. In this
setting, it is unreasonable to define the regret using a supremum over all comparison points u ∈ R

d

as this will invariably lead to infinite regret. Instead, we bound the regret as a function of u. For
example, when hints are not available, standard results provide bounds of the form [7, 15, 28, 21, 5]:

T
∑

t=1

〈ct, xt − u〉 ≤ ǫ+A‖u‖

√

√

√

√

T
∑

t=1

‖ct‖2 log(‖u‖T/ǫ+ 1) +B‖u‖ log(‖u‖T/ǫ+ 1), (7)

for constantsA andB and any user-specified ǫ. Using such algorithms as building blocks, we design

an algorithm with O(
√
T ) expected query cost and for all comparators u, regret is Õ(‖u‖/α).

The algorithm is somewhat simpler than in the constrained case: we take an ordinary algorithm that
does not use hints and subtract the hints from its predictions. Intuitively, each subtraction decreases

the regret byα‖c‖2, so we need onlyO(
√
T ) such events. With constraints, this is untenable because

subtracting the hint might violate the constraint, but there is no problem in the unconstrained setting.
Instead, the primary difficulty is that we need the regret to decrease not by α‖c‖2 but by α‖u‖‖c‖2
for some unknown ‖u‖. This is accomplished by learning a scaling factor yt that is applied to the
hints.

Moreover, in the case that all hints are guaranteed to be α-good, we devise a deterministic algo-
rithm for the unconstrained setting. In light of Theorem 5.2, this establishes a surprising separation
between the unconstrained and constrained settings. For the deterministic approach, we directly
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measure the total query cost and simply query a hint whenever the cost is less than our desired bud-
get. Note that this strategy fails if we allow bad hints as the adversary could provide a bad hint every
time we ask for a hint. The full algorithm is presented in Algorithm 4, with the randomized and
deterministic analyses provided by Theorems 6.1 and 6.2.

Theorem 6.1. The randomized version of Algorithm 4 guarantees an expected regret at most:

2ǫ+ Õ





‖u‖
√

log(‖u‖T/ǫ)
[

K + log(‖u‖T/ǫ) log log(T‖u‖/ǫ)
K +

√
∑

t∈B ‖ht‖2 log(T )
]

α



 ,

with expected query cost at most 2K
√

‖c‖21:T .

Theorem 6.2. If B = ∅, then the deterministic version of Algorithm 4 guarantees:

T
∑

t=1

〈ct, xt − u〉 ≤ 2ǫ+O

(

‖u‖
√

log(‖u‖T/ǫ+ 1)

α
+
‖u‖ log3/2(‖u‖T/ǫ) log log(‖u‖T/ǫ)

K

)

,

with a query cost at most 2K
√

‖c‖21:T .

7 Conclusions

In this paper, we consider OLO where an algorithm has query access to hints, in both the constrained
and unconstrained settings. Surprisingly, we show that it is possible to obtain logarithmic expected

regret by querying for hints at only O(
√
T ) time steps. Our work also demonstrates an intriguing

separation between randomized and deterministic algorithms for constrained online learning. While
our algorithms need to know α, an open question is to obtain an algorithm that can operate without
knowing α. Extending our model to the bandit setting is also an interesting research direction.
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Supplementary Material

A Missing proofs

Proposition A.1. For any arbitrary non-negative real numbers a1, . . . , aT , we have

T
∑

t=1

at
1 + a1:t

≤ log(1 + a1:T ).

Proof. For any a, b > 0, we have

a

b+ a
=

∫ a

x=0

1

b+ a
dx ≤

∫ a

x=0

1

b+ x
dx = log(b+ a)− log(b). (8)

The proof now follows from induction. The base case of t = 1 follows directly from (8) with a set
to a1 and b set to 1. Assuming that the inequality holds for T − 1, let us consider the induction step.

T
∑

t=1

at
1 + a1:t

=
aT

1 + a1:T
+

T−1
∑

t=1

at
1 + a1:t

≤ aT
1 + a1:T

+ log(1 + a1:T−1) ≤ log(1 + a1:T ),

where the last inequality again follows from (8) with a set to aT and b set to 1 + a1:T−1.

Proposition A.2. Consider any c ∈ R
d and r ≥ 0 and let y = argmin‖x‖≤1

r
2‖x‖2 + 〈c, x〉. Then,

if ‖c‖ ≥ r, we have y = −c
‖c‖ .

Proof. Consider f(x) = r
2‖x‖2 + 〈c, x〉. For any ‖x‖ ≤ 1, we have the following.

f(x) ≥ r

2
‖x‖2 − ‖c‖‖x‖ ≥ min

‖z‖≤1

( r

2
‖z‖2 − ‖c‖‖z‖

)

,

since ‖c‖ ≥ r, it is an easy exercise to verify that the RHS is minimized at ‖z‖ = 1 and thus

f(x) ≥ r

2
− ‖c‖.

On the other hand, substituting y = −c
‖c‖ , we have f(y) = r

2 − ‖c‖ and the proposition follows.

Lemma A.3. Let c1, . . . , cn be independent random unit vectors in R
d (distributed uniformly on the

sphere), for some parameters n, d, and let Z =
∑n

t=1 ct Then we have E[‖Z‖] ≥ Ω(
√
n).

Proof. First, we note that since ct are independent, we have

E[‖Z‖2] =
n
∑

t=1

‖ct‖2 = n.

We also have

E[(‖Z‖2)2] = E
[(

∑

i

‖ci‖2 +
∑

i6=j

〈ci, cj〉
)2] ≤ n2 +

∑

i6=j

E[〈ci, cj〉2] ≤ 2n2.

Thus by applying the Paley–Zygmund inequality to the random variable ‖Z‖2, we have Pr[‖Z‖2 ≥
n/4] = Ω(1), and thus Pr[‖Z‖ ≥ √n/2] = Ω(1). Thus the expected value is Ω(

√
n).
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B A sharper analysis of FTRL

Our goal in this section is to prove Theorem 3.1. As a first step, let us define ψt(x) = 〈ct, x〉 +
rt
2 ‖x‖

2
, (with the understanding that c0 = 0) so that by definition, we have

xt+1 = argmin
‖x‖≤1

ψ0:t(x).

Lemma B.1. Let ψt, xt be as defined above. Then for any m ∈ [T ] and any vector u with ‖u‖ ≤ 1,
we have

ψ0:m(xm+1) +
T
∑

t=m+1

ψt(xt+1) ≤ ψ0:T (u).

When m = 0, the lemma is usually referred to as the FTL lemma (see e.g., [14]), and is proved by
induction. Our proof follows along the same lines.

Proof. From the definition of xT+1 (as the minimizer), we have

ψ0:T (u) ≥ ψ0:T (xT+1).

Now, we can clearly write ψ0:T (xT+1) = ψT (xT+1) + ψ0:T−1(xT+1). Next, observe that from the
definition of xT , we have ψ0:T−1(xT+1) ≥ ψ0:T−1(xT ). Plugging this above,

ψ0:T (u) ≥ ψT (xT+1) + ψ0:T−1(xT ).

Once again, writing ψ0:T−1(xT ) = ψT−1(xT )+ψ0:T−2(xT ) and now using the definition of xT−1,
we obtain

ψ0:T (u) ≥ ψT (xT+1) + ψT−1(xT ) + ψ0:T−2(xT−1).

Using the same reasoning again, and continuing until we reach the subscript 0:m in the last term of
the RHS, we obtain the desired inequality.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let us focus on Part 2 for now (see Lemma B.4 for Part 1). Note that we can
rearrange the bound we wish to prove, i.e., (3), as follows. Let z be the unit vector in the direction

of −c1:S , so that −‖c1:S‖ =
∑S

t=1〈ct, z〉. Then (3) can be rewritten as

S
∑

t=1

〈ct, z − u〉+
∑

t>S

〈ct, xt − u〉 ≤
√
1 + σ1:S

2
+

18 + 8 log(1 + σ1:T )

α
.

As a first step, we observe that 〈c1:S , z〉 ≤ 〈c1:S , xS+1〉; indeed, ‖xS+1‖ ≤ 1 by definition. Thus, it
will suffice to prove that

S
∑

t=1

〈ct, xS+1 − u〉+
∑

t>S

〈ct, xt − u〉 ≤
√
1 + σ1:S

2
+

18 + 8 log(1 + σ1:T )

α
. (9)

For proving this, we first appeal to Lemma B.1. Instantiating the lemma with m = S and plugging
in the definition of ψ, we get

〈c0:S , xS+1〉+
r0:S
2
‖xS+1‖2 +

∑

t>S

〈ct, xt+1〉+
rt
2
‖xt+1‖2 ≤ 〈c0:T , u〉+

r0:T
2
‖u‖2 .

Noting that c0 = 0 and rearranging, we get:

S
∑

t=1

〈ct,xS+1 − u〉+
∑

t>S

〈ct, xt − u〉

≤ r0:S
2

(‖u‖2 − ‖xS+1‖2) +
∑

t>S

(rt
2
(‖u‖2 − ‖xt+1‖2) + 〈ct, xt − xt+1〉

)

≤ r0:S
2

+
∑

t>S

(rt
2
(‖u‖2 − ‖xt+1‖2) + 〈ct, xt − xt+1〉

)

.
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The LHS matches the quantity we wish to bound in (9), and thus let us analyze the RHS quantity,
which we denote by Q.

The next observation is that if t > S and
√
1 + σ1:t ≥ 4

α , then the vector xt+1 has norm exactly 1.
This can be shown as follows. If t > S, by the definition of S, we have ‖c1:t‖ > α

4 (1+ σ1:t). Thus,

the vector −c1:t/
√
1 + σ1:t has norm ≥ 1. From the definition of xt+1 (see (2)), this means that the

global minimizer (without the constraint ‖x‖ ≤ 1) of the quadratic form is a point outside the ball,
and thus the minimizer of the constrained problem is its projection, which is thus a unit vector. See
Proposition A.2 for further details. We next have the following claim.

Claim. Let M be the smallest index > S for which
√
1 + σ1:M ≥ 4

α . Then

√

1 + σ1:M−1 ≤ max

{√
1 + σ1:S ,

4

α

}

.

The claim follows by a simple case analysis. If M = S + 1, then clearly the LHS is
√
1 + σ1:S .

Otherwise, from the definition of M , we have the desired bound.

Let us get back to bounding the quantity Q defined above. We split the sum into indices ≤ M − 1
and ≥M . The nice consequence of the observation above is that for all t ≥ M , as ‖xt+1‖ = 1, we

have ‖u‖2 − ‖xt+1‖2 ≤ 0, thus the term disappears. Also, for t < M , we use the simple bound
rt
2 (‖u‖

2 − ‖xt+1‖2) ≤ rt
2 . This gives

Q ≤ r0:M−1

2
+

T
∑

t=S+1

〈ct, xt − xt+1〉.

Thus we only need to analyze the summation on the RHS. To bound the summation
∑T

t=S+1〈ct, xt−
xt+1〉 consider two cases for M separately: either M = S + 1 or M > S + 1. If M = S + 1, then

by Proposition B.3,
∑T

t=S+1〈ct, xt − xt+1〉 ≤ 8
α log(1 + σ1:T ). Alternatively, if M > S + 1, let

us break the summation into terms with t ≤ M − 1 and terms with t ≥ M . Proposition B.2 lets us
bound the sum of the terms corresponding to t ≤ M − 1 by 4

√
σ1:M−1 < 4r0:M−1 ≤ 16

α , where
the last step is by definition of M and using the fact that M − 1 > S. Then Proposition B.3 lets us
bound the sum of the terms with t ≥M by 8

α log(1 + σ1:T ). Thus in all cases we have:

Q ≤ r0:M−1

2
+

16

α
+

8

α
log(1 + σ1:T ) ≤

√
1 + σ1:S

2
+

18

α
+

8

α
log(1 + σ1:T ),

where in the last step we used the claim and bounded the maximum with a sum.

B.1 Auxiliary lemmas

Proposition B.2. For any time step t ≤ T , the iterates of the FTRL procedure satisfy:

‖xt − xt+1‖ ≤
2‖ct‖√

1 + σ1:t−1
.

Furthermore, in any time interval [A,B] with 1 ≤ A ≤ B ≤ T , we have

B
∑

t=A

〈ct, xt − xt+1〉 ≤ 4
(√
σ1:B −

√
σ1:A−1

)

.

Proof. Let us first show the first part. Define ψt(x) = 〈ct, x〉+ rt
2 ‖x‖2. We will invoke [20, Lemma

7], using φ1 = ψ0:t−1 and φ2 = ψ0:t. We have that φ1 is 1-strongly convex with respect to the norm
given by ‖x‖2t−1 = r0:t−1‖x‖2 and ψt = φ2 − φ1 is convex and 2‖ct‖ Lipschitz. Then, since
xt = argminφ1 and xt+1 = argminφ2, [20, Lemma 7] implies:

‖xt − xt+1‖ ≤
2‖ct‖
r0:t−1

=
2 ‖ct‖√

1 + σ1:t−1
.

We can then use this to show the “furthermore” part as follows. For any t in the range, we have

〈ct, xt − xt+1〉 ≤ ‖ct‖ ‖xt − xt+1‖ ≤
2σt√

1 + σ1:t−1
≤ 2σt√

σ1:t
≤ 2

∫ σ1:t

σ1:t−1

dy√
y
,
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where in the third inequality, we used the fact that σt ≤ 1, and in the last inequality, we upper
bounded the term via an integral over an interval of length σt. Summing this over t in the interval
[A,B] thus gives

B
∑

t=A

〈ct, xt − xt+1〉 ≤ 2

∫ σ1:B

σ1:A−1

dy√
y
= 4

(√
σ1:B −

√
σ1:A−1

)

.

Proposition B.3. Let S be an index such that for all t > S, ‖c1:t‖ ≥ α
4 (1 + c1:t), and let t > S be

an index for which the iterates xt and xt+1 of the FTRL procedure are both unit vectors. Then,

‖xt − xt+1‖ ≤
8‖ct‖

α(1 + σ1:t)
.

Furthermore, let M > S be an index such that ‖xt‖ = 1 for all t ≥M . Then,

T
∑

t=M

〈ct, xt − xt+1〉 ≤
8

α
log(1 + σ1:T ).

Proof. For simplicity, let us denote gt = c1:t−1 and gt+1 = c1:t. If the iterates of FTRL are unit
vectors, we have

xt = −
gt
‖gt‖

; xt+1 = − gt+1

‖gt+1‖
.

Thus their difference can be bounded as

xt+1 − xt =
(

gt
‖gt‖

− gt
‖gt+1‖

)

+

(

gt
‖gt+1‖

− gt+1

‖gt+1‖

)

.

The second term clearly has norm ≤ ‖ct‖
‖gt+1‖ . Let us bound the first term:

‖gt‖
∣

∣

∣

∣

1

‖gt‖
− 1

‖gt+1‖

∣

∣

∣

∣

=
| ‖gt+1‖ − ‖gt‖ |
‖gt+1‖

≤ ‖ct‖
‖gt+1‖

.

Note that in the last step, we used the triangle inequality. Combining the two, we get

‖xt+1 − xt‖ ≤
2 ‖ct‖
‖c1:t‖

≤ 8 ‖ct‖
α(1 + σ1:t)

,

as desired. Let us now show the “furthermore” part. From our assumptions aboutM , we can appeal
to the first part of the proposition, and as before, we have for any t ≥M ,

〈ct, xt − xt+1〉 ≤ ‖ct‖ ‖xt − xt+1‖ ≤
8σt

α(1 + σ1:t)
≤ 8

α

∫ 1+σ1:t

1+σ1:t−1

dy

y
.

Now, summing this inequality over t ∈ [M,T ] gives us

T
∑

t=M

〈ct, xt − xt+1〉 ≤
8

α

∫ 1+σ1:M

1+σ1:M−1

dy

y
≤ 8

α
log(1 + σ1:T ).

The next lemma is a consequence of the standard FTRL analysis. We include its proof for complete-
ness. This is also Part (1) of Theorem 3.1.

Lemma B.4. For the FTRL algorithm described earlier, for all N ∈ [T ] and for any vector u with
‖u‖ ≤ 1, we have

N
∑

t=1

〈ct, xt − u〉 ≤ 4.5
√
1 + σ1:N .

Proof. Suppose we use Lemma B.1 with m = 0 and T = N , then we get:

N
∑

t=0

ψt(xt+1) ≤ ψ0:N (u).
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Plugging in the value of ψt,

N
∑

t=1

〈ct, xt − u〉 ≤
N
∑

t=0

rt
2
(‖u‖2 − ‖xt+1‖2) +

N
∑

t=1

〈ct, xt − xt+1〉.

Now, we use the naive bound of r0:N for the first summation on the RHS, and use Proposition B.2
to bound the second summation by r0:N . This completes the proof.

C Switch-once dynamic regret

Theorem 3.3. Let λ ≥ 1 be a given parameter, and (zt)
T
t=1 be any sequence of cost values satisfying

z2t ≤ 4σt. Let (qt)
T
t=1 be a valid-in-hindsight sequence. The points pt produced byAogd then satisfy:

T
∑

t=1

zt(pt − qt) ≤ λ (1 + 3 log(1 + σ1:T )) .

Proof. The proof is analogous to that of OGD (e.g., [30]), but we need fresh ideas specific to our
setup. First, observe that since q is a valid-in-hindsight sequence, we have qt ∈ Dt for all t.

Thus, we have

(pt+1 − qt)2 ≤ (pt − ηtzt − qt)2 (since projection only shrinks distances)

= (pt − qt)2 − 2ηtzt(pt − qt) + η2t z
2
t .

=⇒ zt(pt − qt) ≤
(pt − qt)2 − (pt+1 − qt)2

2ηt
+
ηt
2
z2t . (10)

We now need to sum (10) over t. Note that the second term is easier to bound:
T
∑

t=1

ηt
2
z2t ≤

λ

2

T
∑

t=1

4σt
1 + σ1:t

≤ 2λ log(1 + σ1:T ), (11)

where the last inequality uses Proposition A.1. Suppose S is the time step at which the switch occurs
in the sequence q, and let δ be q1 (i.e., the value in the non-zero segment). We split the first term as:

T
∑

t=1

(pt − qt)2 − (pt+1 − qt)2
2ηt

=
∑

t≤S

(pt − δ)2 − (pt+1 − δ)2
2ηt

+
∑

t>S

p2t − p2t+1

2ηt
. (12)

Next, by setting η0 = λ, writing

(pt − δ)2 − (pt+1 − δ)2
2ηt

=
(pt − δ)2
2ηt−1

− (pt+1 − δ)2
2ηt

+
(pt − δ)2

2

(

1

ηt
− 1

ηt−1

)

,

and noting that 1
ηt
− 1

ηt−1
= σt

λ , we can make the summation telescope. Doing a similar manipulation

for the sum over t > S, the RHS of (12) simplifies to:

(p1 − δ)2
2η0

− (pS+1 − δ)2
2ηS

+
p2S+1

2ηS
− p2T+1

2ηT
+
∑

t≤S

(pt − δ)2σt
2λ

+
∑

t>S

p2tσt
2λ

≤ 1

2η0
+
|DS |2
2ηS

+
T
∑

t=1

|Dt|2σt
2λ

, (13)

where |Dt| is the length/diameter of the domain at time t, i.e., |Dt|2 = min(1, λ2

1+σ1:t
). The inequal-

ity holds because for all t, both pt and qt are in Dt. Plugging in the values of |Dt| and ηt, the first
two terms in (13) are at most λ/2 (because λ ≥ 1). Thus plugging this back into (12), we get

T
∑

t=1

(pt − qt)2 − (pt+1 − qt)2
2ηt

≤ λ
(

1 +

T
∑

t=1

σt
2(1 + σ1:t)

)

.

Finally, using Proposition A.1, the RHS above can be upper bounded by λ
(

1 + 1
2 log(1 + σ1:T )

)

.

Plugging this back into (10), summing over t, and using (11), we get
∑

t

zt(pt − qt) ≤ λ (1 + 3 log(1 + σ1:T )) .
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D Proofs for Section 4

Theorem 4.1. For any B,

E[RAhints,α(~c)] ≤
78 + 38 log(1 + ‖c‖21:T )

α
+ 40

√

∑

t∈B
‖ct‖2 +

20

α

√

∑

t∈B
‖ht‖2

√

log(1 + ‖c‖21:T )

= O

(

√

|B| logT
α

)

, and E[QAhints,α(~c)] ≤ 20
√

‖c‖21:T .

Proof. In the proof of Theorem 3.4, we exploited the fact that Lemma 3.5 actually bounds the
expected regret when B = ∅. However, when B 6= ∅, we have a more complicated relationship:

T
∑

t=1

E[〈ct, x̂t − u〉] =
T
∑

t=1

pt〈ct,−ht − xt〉+ 〈ct, xt − u〉

≤
∑

t/∈B
pt(−α‖ct‖2 − 〈ct, xt〉) + 〈ct, xt − u〉+

∑

t∈B
pt〈ct,−ht − xt〉+ 〈ct, xt − u〉

=
T
∑

t=1

pt(−α‖ct‖2 − 〈ct, xt〉) + 〈ct, xt − u〉+
∑

t∈B
−pt(〈ct, ht〉 − α‖ct‖2)

≤
T
∑

t=1

pt(−α‖ct‖2 − 〈ct, xt〉) + 〈ct, xt − u〉+
∑

t∈B
|Dt−1|(‖ct‖‖ht‖+ α‖ct‖2),

where |Dt−1| = 10

α
√

1+‖c‖2
1:t−1

, and the last line follows from the restrictions on pt in Algorithm 2.

The first sum in the above expression is already controlled by Lemma 3.5. For the second sum,

∑

t∈B
|Dt−1|(‖ct‖‖ht‖+ α‖ct‖2) ≤ 2

∑

t∈B
|Dt|(‖ct‖‖ht‖+ α‖ct‖2)

≤ 2
∑

t∈B

10‖ct‖2
√

1 +
∑

τ∈B,τ≤t ‖cτ‖2
+ |Dt|‖ct‖‖ht‖

≤ 40

√

∑

t∈B
‖ct‖2 + 2

∑

t∈B
|Dt|‖ct‖‖ht‖

(by Cauchy–Schwarz) ≤ 40

√

∑

t∈B
‖ct‖2 + 2

√

∑

t∈B
‖ht‖2

√

∑

t∈B
‖ct‖2|Dt|2

≤ 40

√

∑

t∈B
‖ct‖2 +

20

α

√

∑

t∈B
‖ht‖2

√

log(1 + ‖c‖21:T ).

Theorem 4.2. Set α = 1
4 . Then

E[RAhints,α(~c)] ≤ 312 + 152 log(1 + ‖c‖21:T ) + 80

(

1 +
√

log(1 + ‖c‖21:T )
)√

∑

t∈B
‖ct − ht‖2

= O



log(T ) +

√

√

√

√

T
∑

t=1

‖ct − ht‖2 log(T )



 , and E[QAhints,α(~c)] ≤ 20
√

‖c‖21:T .

Proof. The idea is to get a bound in terms of ‖ct − ht‖2. Since α = 1
4 , t ∈ B is equivalent to

〈ct, ht〉 ≤ ‖ct‖2

4 . Thus if t ∈ B:

‖ct − ht‖2 =‖ct‖2 − 2〈ct, ht〉+ ‖ht‖2 ≥
‖ct‖2
2

+ ‖ht‖2.
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Therefore, we have:

40

√

∑

t∈B
‖ct‖2 + 80

√

∑

t∈B
‖ht‖2 log(1 + ‖c‖21:T ) ≤ 80(1 +

√

log(1 + ‖c‖21:T ))
√

∑

t∈B
‖ct − ht‖2.

Now, by Theorem 4.1 we have:

E[RA,α(~c)] ≤
78 + 38 log(1 + ‖c‖21:T )

α
+ 40

√

∑

t∈B
‖ct‖2 +

20

α

√

∑

t∈B
‖ht‖2

√

log(1 + ‖c‖21:T )

≤ 78 + 38 log(1 + ‖c‖21:T )
α

+ 80

(

1 +
√

log(1 + ‖c‖21:T )
)√

∑

t∈B
‖ct − ht‖2.

E Proofs for Section 5

Theorem 5.2. LetA be any deterministic algorithm for OLO with hints that makes at most C
√
T <

T/2 queries, for some parameter C > 0. Then there is a sequence cost vectors ct and hints ht of
unit length such that (a) ht = ct whenever A makes a hint query, and (b) the regret of A on this

input sequence is at least
√
T

2(1+C) .

Proof. The main limitation of a deterministic algorithm A is that even if it adapts to the costs seen
so far, the adversary always knows if A is going to make a hint query in the next step, and in steps
where a query will not be made, the adversary knows which xt will be played by A.

Using this intuition, we define the following four-dimensional instance. For convenience, let e0 be
a unit vector in R

4, and let S be the space orthogonal to e0. The adversary constructs the instance
iteratively, doing the following for t = 1, 2, . . . :

1. If the algorithm makes a hint query at time t, set ht = ct = e0.
2. If the algorithm does not make a hint query, then if xt is the point that will be played by

the algorithm, set ct to be a unit vector in S that is orthogonal to xt and to c1 + · · ·+ ct−1.
(Note that since S is a three-dimensional subspace of R4, this is always feasible.)

For convenience, define It to be the set of indices ≤ t in which the algorithm has asked for a hint.
Then we first observe that for all t,

∥

∥

∥

∥

∥

∥

∑

j∈[t]\It

cj

∥

∥

∥

∥

∥

∥

2

= t− |It|. (14)

This is easy to see, because ct is always orthogonal to e0, and thus is also orthogonal to
∑

j∈[t−1]\It−1
cj . The equality (14) then follows from the Pythagoras theorem.

Thus, suppose the algorithm makes K queries in total (over the course of the T steps). By assump-

tion K ≤ C
√
T < T/2. Then we have that

∥

∥

∥

∥

∥

∥

∑

j∈[T ]

cj

∥

∥

∥

∥

∥

∥

2

= K2 +

∥

∥

∥

∥

∥

∥

∑

j∈[T ]\IT

cj

∥

∥

∥

∥

∥

∥

2

= K2 + T −K.

Thus the optimal vector in hindsight (say u) achieves
∑

j∈[T ]〈cj , u〉 = −
√
T −K +K2.

Let us next look at the cost of the algorithm. In every step where it makes a hint query, the best cost
that A can achieve is −1 (by playing −e0). In the other steps, the construction ensures that the cost
is 0. Thus the regret is at least

−K +
√

T −K +K2 =
T −K

K +
√
T −K +K2

>
T/2

K +
√
T
≥

√
T

2(1 + C)
.
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F Proofs for Section 6

In order to prove Theorems 6.1 and 6.2, we first provide the following technical statement that allows
us to unify much the analysis:

Lemma F.1. Suppose that Aunc is an unconstrained online linear optimization algorithm that out-
puts wt ∈ R

d in response to costs c1, . . . , ct−1 ∈ R
d satisfying ‖cτ‖ ≤ 1 for all τ and guarantees

for some constants A and B for all u ∈ R
d:

RAunc
(u,~c) ≤ ǫ+A‖u‖

√

√

√

√

T
∑

t=1

‖ct‖2 log(‖u‖T/ǫ+ 1) +B‖u‖ log(‖u‖T/ǫ+ 1),

where ǫ is an arbitrary user-specified constant. Further, supposeAunc-1D is an unconstrained online
linear optimization algorithm that outputs yt ∈ R in response to g1, . . . , gt−1 ∈ R satisfying |gτ | ≤
1 for all τ and guarantees for all y⋆ ∈ R:

T
∑

t=1

gt(yt − y⋆) ≤ ǫ+ A|y⋆|

√

√

√

√

T
∑

t=1

g2t log(|y⋆|T/ǫ+ 1) +B|y⋆| log(|y⋆|T/ǫ+ 1).

Finally, suppose also that E

[

∑T
t=1 1t|〈ct, ht〉|

]

≥ M
√

1 + ‖c‖21:T − N and

E
[
∑

t∈B 1t|〈ct, ht〉|
]

≤ H and E

[

∑T
t=1 1t〈ct, ht〉2

]

≤ F
√

1 + ‖c‖21:T for some constant

M,N,H, F . Then both the deterministic and randomized version of Algorithm 4 guarantee:

E [RAunc
(u,~c)] ≤ 2ǫ+B‖u‖ log(‖u‖T/ǫ+ 1) +

4A‖u‖(H +N)
√

log(‖u‖T/ǫ+ 1)

M

+
2AB‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Mǫ) + 1)

M

+
2A3F‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Mǫ) + 1)

M2
.

Proof of Lemma F.1. Some algebraic manipulation of the regret definition yields:

E[RAunc
(u,~c)] ≤ E

[

inf
y⋆

T
∑

t=1

〈ct, wt − u〉 − y⋆
T
∑

t=1

1t〈ht, ct〉 −
T
∑

t=1

1t〈ht, ct〉(yt − y⋆)
]

≤ E

[

inf
y⋆≥0

T
∑

t=1

〈ct, wt − u〉 − y⋆
T
∑

t=1

1t|〈ht, ct〉|+ 2y⋆
∑

t∈B
1t|〈ht, ct〉| −

T
∑

t=1

1t〈ht, ct〉(yt − y⋆)
]

.

Now using the hypothesized bounds we have

E [RAunc
(u,~c)] ≤ E

[

inf
y⋆≥0

T
∑

t=1

〈ct, wt − u〉 − y⋆M
√

1 + ‖c‖21:T + 2y⋆H + y⋆N −
T
∑

t=1

1t〈ht, ct〉(yt − y⋆)
]

≤ inf
y⋆≥0

E



2ǫ+A‖u‖

√

√

√

√

T
∑

t=1

‖ct‖2 log(‖u‖T/ǫ+ 1) +B‖u‖ log(‖u‖T/ǫ+ 1)

− y⋆M
√

1 + ‖c‖21:T + 2y⋆H + y⋆N +Ay⋆

√

√

√

√

t
∑

t=1

g2t log(y⋆T/ǫ+ 1) +By⋆ log(y⋆T/ǫ+ 1)
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using Jensen inequality,

≤ inf
y⋆≥0

2ǫ+A‖u‖

√

√

√

√

T
∑

t=1

‖ct‖2 log(‖u‖T/ǫ+ 1) +B‖u‖ log(‖u‖T/ǫ+ 1)− y⋆M
√

1 + ‖c‖21:T

+ 2y⋆H + y⋆N +Ay⋆

√

√

√

√

E

[

t
∑

t=1

1t〈ct, ht〉2
]

log(y⋆T/ǫ+ 1) +By⋆ log(y⋆T/ǫ+ 1)

≤ inf
y⋆≥0

2ǫ+A‖u‖

√

√

√

√

T
∑

t=1

‖ct‖2 log(‖u‖T/ǫ+ 1) +B‖u‖ log(‖u‖T/ǫ+ 1)− y⋆M
√

1 + ‖c‖21:T

+ 2y⋆H + y⋆N +Ay⋆

√

F
√

1 + ‖c‖21:T log(y⋆T/ǫ+ 1) +By⋆ log(y⋆T/ǫ+ 1)

with a little rearrangement,

≤ inf
y⋆≥0

2ǫ+A‖u‖

√

√

√

√

T
∑

t=1

‖ct‖2 log(‖u‖T/ǫ+ 1) +B‖u‖ log(‖u‖T/ǫ+ 1)− y⋆
2
M
√

‖c‖21:T

+ 2y⋆H + y⋆N +By⋆ log(y⋆T/ǫ+ 1)

+ Ay⋆

√

F
√

1 + ‖c‖21:T log(y⋆T/ǫ+ 1)− y⋆
2
M
√

1 + ‖c‖21:T

≤ inf
y⋆≥0

2ǫ+A‖u‖

√

√

√

√

T
∑

t=1

‖ct‖2 log(‖u‖T/ǫ+ 1) +B‖u‖ log(‖u‖T/ǫ+ 1)− y⋆
2
M
√

‖c‖21:T

+ 2y⋆H + y⋆N +By⋆ log(y⋆T/ǫ+ 1) + sup
X
Ay⋆

√

FX log(y⋆T/ǫ+ 1)− y⋆
2
MX

≤ inf
y⋆≥0

2ǫ+A‖u‖

√

√

√

√

T
∑

t=1

‖ct‖2 log(‖u‖T/ǫ+ 1) +B‖u‖ log(‖u‖T/ǫ+ 1)− y⋆
2
M
√

‖c‖21:T

+ 2y⋆H + y⋆N +By⋆ log(y⋆T/ǫ+ 1) +
y⋆A

2F log(y⋆T/ǫ+ 1)

2M
.

Now, we set

y⋆ =
2A‖u‖

√

log(‖u‖T/ǫ+ 1)

M
.

This yields

E[RAunc
(u,~c)]

≤ 2ǫ+B‖u‖ log(‖u‖T/ǫ+ 1) + 2y⋆H + y⋆N +By⋆ log(y⋆T/ǫ+ 1) +
y⋆A

2F log(y⋆T/ǫ+ 1)

2M

≤ 2ǫ+B‖u‖ log(‖u‖T/ǫ+ 1) +
4A‖u‖(H +N)

√

log(‖u‖T/ǫ+ 1)

M

+
2AB‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Mǫ) + 1)

M

+
2A3F‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Mǫ) + 1)

M2
.

Now, to prove Theorem 6.1, it suffices to instantiate the Lemma. We restate the Theorem below for
convenience:
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Theorem 6.1. The randomized version of Algorithm 4 guarantees an expected regret at most:

2ǫ+ Õ





‖u‖
√

log(‖u‖T/ǫ)
[

K + log(‖u‖T/ǫ) log log(T‖u‖/ǫ)
K +

√
∑

t∈B ‖ht‖2 log(T )
]

α



 ,

with expected query cost at most 2K
√

‖c‖21:T .

Proof. Define

pt = min

(

1,
K

α
√

1 + ‖c‖21:t

)

,

so that in the randomized version of Algorithm 4, at round t, we ask for a hint with probability pt−1.
Clearly, the expected query cost is:

E

[

T
∑

t=1

1t〈ct, ht〉
]

=

T
∑

t=1

αpt−1‖ct‖2 ≤ K
T
∑

t=1

‖ct‖2
√

‖c‖21:t
≤ 2K

√

‖c‖21:T .

Now, to bound the regret we consider two cases. First, if 1 + ‖c‖21:T ≤ K2

α2 , then we have:

E[RAunc
(u,~c)] ≤ E

[

T
∑

t=1

〈ct, wt − u〉 −
T
∑

t=1

1t〈ct, ht〉yt
]

≤ E

[

T
∑

t=1

〈ct, wt − u〉+
T
∑

t=1

gt(yt − 0)

]

≤ 2ǫ+A‖u‖

√

√

√

√

T
∑

t=1

‖ct‖2 log(‖u‖T/ǫ+ 1) +B‖u‖ log(‖u‖T/ǫ+ 1)

≤ 2ǫ+
A‖u‖K

√

log(‖u‖T/ǫ+ 1)

α
+B‖u‖ log(‖u‖T/ǫ+ 1),

and so the result follows. Thus, we may assume 1 + ‖c‖21:T > K2

α2 . In this case, we will calculate
values for M , H , and F to use in tandem with Lemma F.1. First,

E

[

T
∑

t=1

1t〈ct, ht〉2
]

≤
T
∑

t=1

pt−1‖ct‖2 ≤
K

α

T
∑

t=1

‖ct‖2
√

‖c‖21:t
≤ 2K

α

√

1 + ‖c‖21:T .

So that we may take F = 2K
α . Next, note that pT = K

α
√

1+‖c‖2
1:T

by our casework assumption.

Therefore:

−αpT ‖c‖21:T ≤ α− αpT (1 + ‖c‖21:T ) ≤ α−K
√

‖c‖21:T ,

so that we may take M = K and N = α. Finally,

∑

t∈B

pt|〈ct, ht〉| ≤ K
∑

t∈B

‖ct‖‖ht‖
α
√

‖ct‖21:t
≤ K

α

√

∑

t∈B

‖ct‖2
‖ct‖21:t

∑

t∈B

‖ht‖2 ≤
K

α

√

∑

t∈B

‖ht‖2 log(1 + ‖c‖21:T ),

so that we may take H = K
α

√

∑

t∈B
‖ht‖2 log(1 + ‖c‖21:T ). Then Lemma F.1 implies
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E[RAunc
(u,~c)] ≤ 2ǫ+B‖u‖ log(‖u‖T/ǫ+ 1) +

4A‖u‖(H + α)
√

log(‖u‖T/ǫ+ 1)

M

+
2AB‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Mǫ) + 1)

M

+
2A3F‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Mǫ) + 1)

M2

≤ 2ǫ+B‖u‖ log(‖u‖T/ǫ+ 1) +
4A‖u‖

√

log(‖u‖T/ǫ+ 1)
∑

t∈B
‖ht‖2 log(1 + ‖c‖21:T )

α

+
4A‖u‖α

√

log(‖u‖T/ǫ+ 1)

K

+
2AB‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Kǫ) + 1)

K

+
2A3‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Kǫ) + 1)

Kα
.

Simplifying the expression yields

E[RAunc
(u,~c)]

≤ 2ǫ+ Õ





‖u‖( log(‖u‖T/ǫ)3/2 log log(T‖u‖/ǫ)
K +

√

log(‖u‖T/ǫ)∑t∈B
‖ht‖2 log(1 + ‖c‖21:T ))

α



 .

F.1 Deterministic version

Before providing the proof of Theorem 6.2, we need the following auxiliary statement.

Lemma F.2. Suppose B = ∅. Then for all t, the deterministic version of Algorithm 4 guarantees:

√

‖c‖21:T−1 −K − 1− K

2α
≤

T
∑

t=1

1t〈ct, ht〉 ≤ K
√

1 + ‖c‖21:T−1.

Proof. Define Zt = 1+
∑T

t=1 1t〈ct, ht〉 with Z0 = 1. We will instead prove the equivalent bound:

K
√

‖c‖21:T−1 −K −
K

2α
≤ ZT ≤ 1 +K

√

1 + ‖c‖21:T−1.

The upper bound is immediate from the definition of ZT and the fact that 〈ct, ht〉 ≤ 1. For the lower
bound, we will prove a slightly different statement that we will later show implies the desired result:

for all t ≥ 0, Zt ≥ K
√

1 + ‖c‖21:t −K
∑

t′≤t|
√

‖c‖2

1:t′
≤ 1

2α

‖ct′‖2
2
√

‖c‖21:t′
.

We proceed by induction. The base case for t = 0 is clear from definition of Zt. Suppose the

statement holds for some t. Then consider two cases, either Zt < K
√

1 + ‖c‖21:t or not. If Zt ≥
K
√

1 + ‖c‖21:t, then Zt+1 = Zt ≥ K
√

1 + ‖c‖21:t ≥ K
√

1 + ‖c‖21:t+1 −K and so the statement

holds. Alternatively, suppose Zt < K
√

1 + ‖c‖21:t. Then:
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Zt+1 = Zt + 〈ct+1, ht+1〉

≥ K
√

1 + ‖c‖21:t −K −
∑

t′≤t|
√

‖c‖2
1:t≤ K

2α

‖ct′‖2
2
√

‖c‖21:t′
+ α‖ct+1‖2

≥ K
√

1 + ‖c‖21:t+1 −
K‖ct+1‖2

2
√

1 + ‖c‖21:t
−K −

∑

t′≤t|
√

‖c‖2
1:t≤ K

2α

‖ct′‖2
2
√

‖c‖21:t′
+ α‖ct+1‖2

≥ K
√

1 + ‖c‖21:t+1 −
K‖ct+1‖2

2
√

‖c‖21:t+1

−K −
∑

t′≤t|
√

‖c‖2

1:t′
≤ K

2α

‖ct′‖2
2
√

‖c‖21:t′
+ α‖ct+1‖2

≥
√

1 + ‖c‖21:t+1 −K −
∑

t′≤t+1|
√

‖c‖2

1:t′
≤ K

2α

‖ct′‖2
2
√

‖c‖21:t′
,

so that the induction is complete.

Finally, observe that if τ is the largest index such that
√

‖c‖21:t ≤ K
2α , then

∑

t′≤t+1|
√

‖c‖2

1:t′
≤ K

2α

‖ct′‖2
2
√

‖c‖21:t′
≤

τ
∑

t′=1

‖ct′‖2
2
√

‖c‖21:t′
≤
√

‖c‖21:τ ≤
K

2α
.

Now we can prove Theorem 6.2:

Theorem 6.2. If B = ∅, then the deterministic version of Algorithm 4 guarantees:

T
∑

t=1

〈ct, xt − u〉 ≤ 2ǫ+O

(

‖u‖
√

log(‖u‖T/ǫ+ 1)

α
+
‖u‖ log3/2(‖u‖T/ǫ) log log(‖u‖T/ǫ)

K

)

,

with a query cost at most 2K
√

‖c‖21:T .

Proof. From Lemma F.2 we have that the query cost is at most K
√

‖c‖21:T . To bound the regret,
we will appeal to Lemma F.1, which requires finding values forM,N,H, F . First, again by Lemma
F.2, we have:

K
√

1 + ‖c‖21:T − 3K − 1− K

2α
≤ K

√

‖c‖21:T−1 −K − 1− K

2α
≤

T
∑

t=1

1t〈ct, ht〉.

So that we may set M = K and N = 3K + 1 + K
2α . Next, since B = ∅, H = 0. Finally, since all

hints are α-good, we have

T
∑

t=1

1t〈ct, ht〉2 ≤
T
∑

t=1

1t〈ct, ht〉 ≤ K
√

‖c‖21:T ,

so that we may take F = K . Therefore, noticing that the expected regret is the actual regret since
the algorithm is deterministic, we have
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RAunc
(u,~c) ≤ 2ǫ+B‖u‖ log(‖u‖T/ǫ+ 1) +

4A‖u‖(H +N)
√

log(‖u‖T/ǫ+ 1)

M

+
2AB‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Mǫ) + 1)

M

+
2A3F‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Mǫ) + 1)

M2

≤ 2ǫ+B‖u‖ log(‖u‖T/ǫ+ 1) + 4A‖u‖
(

4

α
+

1

K

)

√

log(‖u‖T/ǫ+ 1)

+
2AB‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Kǫ) + 1)

K

+
2A3‖u‖

√

log(‖u‖T/ǫ+ 1) log(2A‖u‖T
√

log(‖u‖T/ǫ+ 1)/(Kǫ) + 1)

K

≤ 2ǫ+O

(

‖u‖
√

log(‖u‖T/ǫ+ 1)

α
+
‖u‖ log3/2(‖u‖T/ǫ) log log(‖u‖T/ǫ)

K

)

.
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