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Abstract

Principal Component Regression (PCR) is a
popular method for prediction from data, and
is one way to address the so-called multi-
collinearity problem in regression. It was
shown recently that algorithms for PCR such
as hard singular value thresholding (HSVT)
are also quite robust, in that they can han-
dle data that has missing or noisy covariates.
However, such spectral approaches require
strong distributional assumptions on which
entries are observed. Specifically, every co-
variate is assumed to be observed with prob-
ability (exactly) p, for some value of p. Our
goal in this work is to weaken this require-
ment, and as a step towards this, we study a
“semi-random” model. In this model, every
covariate is revealed with probability p, and
then an adversary comes in and reveals ad-
ditional covariates. While the model seems
intuitively easier, it is well known that algo-
rithms such as HSVT perform poorly. Our
approach is based on studying the closely re-
lated problem of Noisy Matrix Completion in
a semi-random setting. By considering a new
semidefinite programming relaxation, we de-
velop new guarantees for matrix completion,
which is our core technical contribution.

1 Introduction

Regression is one of the fundamental problems in
statistics and data analysis, with over two hundred
years of history. We are given n observations, each
consisting of d prediction or regression variables and
one output that is a linear function of the prediction
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variables. Denoting the outputs by a vector y ∈ Rn
and the prediction variables by a matrix M ∈ Rn×d
(each row corresponds to an observation), linear re-
gression aims to model y as

y = Mβ + η, (1)

where β ∈ Rd the vector of regression coefficients, and
η is a vector of error terms, typically modeled as having
independent Gaussian entries. The goal of the regres-
sion problem is to find the coefficients β. The stan-
dard procedure is to solve the least squares problem,
min‖y −Mβ‖2.

One of the issues in high dimensional regression (large
d) is the problem of multi-collinearity, where there
are correlations (in values) between regression vari-
ables, leading to unstable values for the parameters
β (see Gunst and Webster (1975); Jolliffe (1986)).
One common approach to overcome this problem is
to use subset selection methods (e.g., Hocking (1972);
Draper and Smith (1966)). Another classic approach
Hotelling (1957); Jolliffe (1986) is to perform regres-
sion after projecting to the space of the top prin-
cipal components of the matrix M . This is called
Principal Component Regression (PCR). Formally, if
M (r) = U (r)Σ(r)(V (r))T is the best rank r approxima-
tion of M , then the idea is to replace (1) with

y = MV (r)β′ + η. (2)

The goal is to now find the best β′ ∈ Rr. This is known
to yield more stable results in many settings (Mosteller
and Tukey, 1977). It also has the advantage of being
a “smaller” problem, thus it can be solved more ef-
ficiently. Recently, Agarwal et al. (2019) observed
that in settings where the regression matrix is (close
to) low rank, PCR also provides a way to deal with
missing and noisy covariates — a well-known issue in
applications (Little, 1992). Their main insight is that
observing a random subset of the entries of M is good
enough to obtain the top singular vectors V (r) to a
high accuracy. Thus one can obtain a β′ that yields a
low-error regression model.
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While the result of Agarwal et al. (2019) provides novel
theoretical guarantees on regression with missing en-
tries, it is restrictive: guarantees can only be obtained
when every entry of M is observed independently with
(the same) probability p. Given inherent dependencies
in applications (e.g., some users may intrinsically re-
veal more information than others; certain covariates
may be easier to measure than others, etc.), we ask:
Can we design algorithms for partially-observed PCR
under milder assumptions on the observations?
It is easy to see that unless sufficiently many entries
are observed from each column, recovering the corre-
sponding coordinate of β is impossible. This motivates
having a lower bound on the probability of each entry
being revealed. This leads us to considering a so-called
semi-random model (Blum and Spencer, 1995; Feige
and Krauthgamer, 2000; Makarychev et al., 2012;
Cheng and Ge, 2018). In our context, such a model
corresponds to the following: (a) initially, all the en-
tries are revealed independently with probability p, (b)
an adversary reveals additional elements (arbitrarily).
Despite appearing to make the problem “easier” than
the random case, since an algorithm has no idea if an
entry was revealed in step (a) or (b), algorithms based
on obtaining estimators (that rely on entries being ob-
served with probability p) will fail.

Further motivation for the semirandom model.
In both PCR with missing covariates and matrix com-
pletion, at a high level, we wish to understand what
“observation patterns” allow for effective recovery.
Without stochasticity assumptions, there are hardness
results (even when one observes Ω(n2) entries; Hardt
et al. (2014)), and we know of positive results when
each entry is observed independently with probability
p. The semirandom model has been studied in the
literature (for graph partitioning and also for matrix
completion) because in spite of seeming easier as dis-
cussed above, it ends up causing spectral methods to
fail. The semirandom model is equivalent to the set-
ting where every entry has some “base” probability of
being observed, but the probability could be higher for
some (unknown to us) entries. E.g., in recommender
systems, some users may provide more ratings for cer-
tain types of items than others, and this is typically
unknown to the algorithm. The model is also closely
related to the notion of Massart noise which is known
to be challenging for a variety of learning problems
(see, e.g., Diakonikolas et al. (2019)).

Our approach to partially-observed PCR will be based
on the closely related problem of matrix completion
(see Candes and Recht (2008); Keshavan et al. (2012);
Bhojanapalli and Jain (2014) and references therein).
The problems are related because intuitively, we can
think of filling in the missing values in the covariate

matrix and applying PCR. Further, matrix completion
can also be formulated (and indeed has been studied
in Cheng and Ge (2018)) in a semi-random setting.
However, to the best of our knowledge, trade-offs be-
tween the error in the observations and the recovery
error have not been studied in a semi-random model.
Analyzing this via a semidefinite programming (SDP)
relaxation is our main technical contribution. Interest-
ingly, our analysis relies heavily on a recent non-convex
approach to matrix completion (Chen et al., 2019).

1.1 Our results

We discuss now our results about matrix completion
and the implications to PCR with missing and noisy
entries. Formal definitions and the full setup is de-
ferred to Section 2.

Result about matrix completion. Recall that in
matrix completion, we have an unknown rank-r ma-
trix M∗ (dimensions n × n), which we wish to infer

given noisy and partial observations. Ω̃ denotes the
set of observed indices, and σ denotes the standard
deviation of the noise added to each observation. Ω̃ is
chosen using a semi-random process (first forming Ω
in which every index is present with probability p and
then adversarially adding indices).

Theorem (informal). Under appropriate incoher-
ence assumptions on M∗, there exists a polynomial
time algorithm that finds an estimate Z that satisfies

‖M − Z‖F ≤ Oκ,p,µ (nr log n · σ) .

The result holds with high probability, and the formal
statement along with conditions for p, σ is presented in
Theorem 1. The parameters κ, µ capture the condition
number and incoherence properties of M∗. To the best
of our knowledge, such a bound relating the noise and
recovery error is not previously known in the semi-
random model for matrix completion. The prior work
of (Cheng and Ge, 2018) does not consider the noisy
case.

Our recovery error bound is a factor
√
n worse than

the best (and optimal) bounds for matrix completion
with random observations (Chen et al., 2019; Kesha-
van et al., 2012). However, it is better than some of
the earlier results of (Candes and Plan, 2009). Specif-
ically, the work of (Candes and Plan, 2009) imposes
the constraint ‖PΩ(Z − M)‖F ≤ δ and shows that

‖Z − M∗‖F ≤
√

n
p δ (up to constants). If Ω corre-

sponds to i.i.d. observations with probability p, we
must set δ = n

√
p · σ for the SDP to be feasible. This

leads to a recovery error bound of n3/2σ. In the semi-
random model, the SDP feasibility constraint must
now depend on Ω̃ and if we have � n2p observations,
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the n3/2σ bound becomes even worse. Chen et al.
(2019) improve the error bound above by a factor of
n
√
p in the random case. Our result can be viewed

as being in between the two results while holding true
even in the semirandom model. An interesting open
problem is thus to close the

√
n gap between the ran-

dom and semirandom settings.

Our main proof ingredient is a semidefinite program-
ming (SDP) relaxation that we can write down given

Ω̃, but whose analysis can be conducted using tools
from the random case. In particular, we use a tech-
nique of Chen et al. (2019) in which the solution to a
non-convex program is used to derive a dual certificate.

Result about PCR. Using our algorithm for ma-
trix completion as a subroutine lets us obtain new
guarantees for PCR under noisy and partial obser-
vations. Under appropriate assumptions on the true
covariate matrix M∗, we can relax the i.i.d. assump-
tion on the observations to semi-random observations,
while still obtaining bounds similar to those of Agar-
wal et al. (2019).

Theorem (informal). Under appropriate incoher-
ence assumptions on M∗, there exists an efficient al-
gorithm that, given a noisy and partially observed co-
variate matrix, outputs β̂ whose mean-squared-error
(defined as 1

n‖M
∗β̂ −M∗β∗‖22 for the optimal coeffi-

cients β∗; see Section 2.2) is at most

O(“optimal MSE”) +Oκ,µ,p
(
‖β∗‖22r2n log n · σ2

)
.

The optimal MSE is a term that turns out to be un-
avoidable (with high probability) even if we knew M∗.
We also note that our bound is in general incompara-
ble with that of Agarwal et al. (2019), but it avoids
additive-error terms. Specifically, when σ = 0, our
bounds truly converge to the optimal MSE, even if the
matrix is only partially observed (which is not true for
the HSVT-based algorithm of Agarwal et al. (2019)).

Experimental results. In our experiments, we dis-
cuss the efficacy of our techniques along multiple axes.
First, we focus on matrix completion and (a) evaluate
the robustness of our SDP formulation to adding more
observations (i.e., compare the random setting to the
semi-random one) and (b) compare the recovery error
in matrix completion with that of HSVT. Next, for
matrix completion, we compare our SDP with the best
SDP when the observations are purely random. Here,
we observe that our SDP does slightly worse. This
indicates a “price to pay” for being robust; it also sug-
gests that the loss of

√
n compared to the best-known

bounds in the random case may not be an artefact
of our analysis. Finally, we compare our SDP-based
algorithm with HSVT in the PCR context and show
significant improvement both with and without reveal-
ing additional entries.

1.2 Related work

There has been extensive literature on PCR and ma-
trix completion that we do not review for lack of space.
For PCR, we refer to the early work of Jolliffe (1986),
the recent work Agarwal et al. (2019) and references
therein. We highlight that unlike classic regression,
where the goal is to find β and error is measured in
terms of the distance ‖β̂ − β∗‖, in PCR we implic-
itly consider situations where there are multiple good
β∗s, and the focus is on the mean-squared error (see
Section 2.2).

The HSVT algorithm is a classic method for matrix
completion, and Chatterjee (2015) presents near-tight
results for it. The early works on matrix comple-
tion such as Candes and Plan (2009); Keshavan et al.
(2012) obtain weaker dependencies between the noise
(per observation) and the recovery error, even with
random observations. To the best of our knowledge,
the recent work of Cheng and Ge (2018) is the only
one to develop guarantees for matrix completion in the
semi-random model (albeit without error). There is a
large body of work on such models for other problems
such as graph partitioning and community detection
(see Feige and Krauthgamer (2000); Makarychev et al.
(2012) and references therein).

2 Notation and preliminaries

In what follows, all the matrices that we consider will
be square (n × n). Our results immediately apply to
rectangular matrices, as long as we use the maximum
of the two dimensions. The rank parameter r is as-
sumed to be � n.

The matrix M∗ will denote the unknown (or ground
truth) of rank r. We assume that the low-rank decom-
position is M∗ = U∗Σ∗(V ∗)T , where U∗, V ∗ ∈ Rn×r.
The decomposition is said to satisfy the µ-incoherence
property if for all i ∈ [n], we have ‖U∗i ‖ ≤

√
µr
n . The

incohrence property ensures that the mass of the ma-
trix (as well as “information” about the decomposi-
tion) is well spread.

High probability. All our theorems hold with high
probability, and by this we mean probability over the
randomness in the support Ω (which gets appended to

form Ω̃ in the semirandom model), as well as the ran-
domness in the noise terms, which are distributed as
independent Gaussians.

2.1 Model for semi-random matrix
completion

Let M∗ be the ground truth matrix with rank r. We
assume that the low-rank decomposition of M∗ =
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U∗Σ∗(V ∗)T satisfies the µ-incoherence property de-
fined above. Further, we let σi denote the ith largest
singular value of M∗, and for convenience, denote
σmin = σr. The condition number κ := σ1

σmin
.

Finally, what we are given are partial observations
from a matrix M := M∗ + E where Eij ∼ N (0, σ2).

The set of observed entries is denoted by Ω̃. These
are generated via a semi-random model where (a)
Ω ⊂ [n]× [n] is chosen selecting each index uniformly
at random with probability p, and (b) an adversary

adds an arbitrary number of indices to Ω to yield Ω̃.
Crucially, the adversary sees the matrices M and M∗

before deciding the entries to reveal.

2.2 The PCR Model

Let M∗ be the ground-truth matrix of covariates. Let
y be the response variables where each yi is linearly
associated with M∗i,., i.e.,

yi = M∗i,.β
∗ + εi (3)

where β∗ is the unknown model parameter and the εi
is an independent noise distributed as N (0, γ2). We
are given a noisy, partially observed version of M∗.
Specifically, let M = M∗ + E, where E is an error
matrix whose entries are again independent and dis-
tributed as N (0, σ2). To this matrix, a mask is applied
according to the semi-random model discussed earlier.
PΩ̃(M) is the matrix that is given as input.

The objective in PCR is to produce a β̂ so as to min-
imize the recovery error:

MSE(β̂) =
1

n

n∑
i=1

(
M∗i,·β

∗
i −M∗i,.β̂i

)2

. (4)

In other words, the combination β̂ that we produce
must lead to a good approximation of the “ideal”
(noise-free) observations. Even if we were given the
rank r matrix M∗, the recovery error via least-squares

is Θ
(
γ2r
n

)
(see, e.g., Agarwal et al. (2019)), and thus

this is the “best possible” error we can achieve.

3 Robust semi-random matrix
completion

We will use the model and notation as discussed in Sec-
tion 2.1. While many of the known SDP relaxations
(e.g., Candes and Plan (2009); Chen et al. (2019)) in-
volve terms such as ‖PΩ(M −Z)‖F in the constraints,

using an analogous constraint with Ω̃ makes it impos-
sible to carry over the results, as they rely crucially
on the randomness of Ω. Our starting point is thus a

different convex optimization problem:

Sdp(δ) : min ‖Z‖∗ subject to

|Zij −Mij | ≤ δ ∀ (i, j) ∈ Ω̃,
(5)

where δ = 4σ
√

log n. The choice of δ ensures that
M∗ is feasible. Our key observation (as also shown in
our experiments) is that this SDP is quite stable to the
addition of observations (which translate to additional
constraints in the matrix).

Parameter choices and assumptions. In what
follows, we will set λ = δn

√
p, and the lemmas will

assume that

σ ≤ c σmin log n

n3/2
(6)

n2p ≥ Cκ4µ2r2n log3 n, (7)

where c is a sufficiently small and C a sufficiently large
constant.

Our main technical result bounds the error between
the solution to Sdp(δ) and the unknown low-rank ma-
trix M∗.

Theorem 1. (Error bound for Sdp) Suppose δ =
4σ
√

log n. Let µ be the incoherence parameter and let
σ be the variance of the noise. Suppose each Mij is
observed with probability at least p. Then for a suffi-
ciently large constant c, the solution Z to optimization
problem (5) satisfies

‖Z −M∗‖F ≤ c ·
κ3r3µ2n

√
log n

p
· σ (8)

We note that the bound does not depend on the num-
ber of additional element revealed by the adversary. It
is also a factor of

√
n weaker than the optimal recovery

bounds (Keshavan et al., 2012; Chen et al., 2019). Our
proof of the theorem goes via an elegant argument used
in Chen et al. (2019). In the random support setting
(where we are given Ω) they show that the solution to
the unconstrained SDP:

min
1

2
‖PΩ(Z −M)‖2F + λ‖Z‖∗ (9)

is closely related to the solution of an appropriate non-
convex optimization problem:

min
X,Y ∈Rn×r

1

2
‖PΩ(XY T −M)‖2F + λR(X,Y ), (10)

where R(X,Y ) is an appropriate regularization term.
In both the problems above, λ is a parameter (which
may be viewed as an appropriate Lagrange multiplier),
that is set to roughly σ

√
np for their result.
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Unfortunately, the strong connection between the two
optimization problems seems to fail to hold in the
semi-random setting, i.e., when Ω in the formula-
tions is replaced by Ω̃. The analysis of Chen et al.
(2019) that the non-convex optimum is close to M∗

also strongly relies on the randomness of Ω. However,
the existence of X,Y ∈ Rn×r with appropriate struc-
tural properties turns out to be very useful for us. We
now state the lemmas from Chen et al. (2019) that we
will use.

Lemma 1 (Properties from Chen et al. (2019)).
There exist matrices X,Y ∈ Rn×r (specifically the out-
put of an appropriate gradient descent algorithm for
the non-convex problem above) with the following prop-
erties. In what follows, T refers to the tangent space
defined as

T = {XWT +W ′Y T : W,W ′ ∈ Rn×r}.

PT and PT⊥ refer to the projections to T and T⊥ re-
spectively.

1. (Claim 2 of Chen et al. (2019)). Let XY T =
UΣV T be the SVD. Then

PΩ(XY T −M) = −λUV T +R (11)

where R is a residual matrix that satisfies

‖PT (R)‖F ≤
72κλ

n5
and ‖PT⊥(R)‖ ≤ λ/2,

2. (Strong injectivity) The projection PΩ satisfies:

1

p
‖PΩ(H)‖2F ≥

1

32κ
‖H‖2F ∀H ∈ T (12)

3. (Lemma 5 of Chen et al. (2019)) XY T is close to
the ground truth M∗ in the following sense:

∥∥XY T −M∗∥∥
F
≤ CF

λκ2µ
√
r

p
,∥∥XY T −M∗∥∥∗ ≤ Cop 2rλκ

p
,

∥∥PΩ(XY T −M∗)
∥∥
F
≤ C∞

λ
√
µ3r3κ5

√
p

,

(13)

where CF , Cop, C∞ are appropriate constants.

Remarks. Roughly, Lemma 1 shows the existence of
a low-rank matrix XY T that has nicer properties than
even the ground-truth X∗(Y ∗)T , while being close to
it in different norms. We also note that parts (1-3) of
Lemma 1 are shown in Chen et al. (2019) for a slightly
different value of λ. In the supplementary material,
Section B, we verify that all the claims also hold for

our choice of λ. This lemma is where the incoher-
ence property plays a crucial role, especially in part 2
(Equation 12).

We now use this lemma to show our main result. The
proof is inspired by duality-based arguments in many
prior works (including Candes and Plan (2009); Chen
et al. (2019)).

3.1 Proof of Theorem 1

Let Z denote the optimum solution to the optimization
problem (5). Our goal will be to prove that Z is close
to XY T . By part (3) of Lemma 1, it will follow that
Z is also close to XY T , by the triangle inequality.

To this end, define Z = XY T + ∆. In order to bound
‖∆‖F , we first write

‖∆‖F ≤ ‖PT∆‖F + ‖PT⊥∆‖F , (14)

and bound the two terms. The first step is to relate
the first term on the RHS with the second.

‖PΩ(∆)‖F = ‖PΩPT (∆) + PΩPT⊥(∆)‖F
≥ ‖PΩPT (∆)‖F − ‖PΩPT⊥(∆)‖F

≥
√

p

32κ
‖PT (∆)‖F − ‖PT⊥(∆)‖F

(15)

In the last step, we used the strong injectivity property
from Lemma 1. This implies that

‖PT (∆)‖F ≤
√

32κ

p
(‖PT⊥(∆)‖F + ‖PΩ(∆)‖F ) (16)

The term ‖PΩ(∆)‖F turns out to be easy to bound,
using the properties of the SDP:

‖PΩ(∆)‖F =
∥∥PΩ(Z −XY T )

∥∥
F

≤ ‖PΩ(Z −M∗)‖F +
∥∥PΩ(M∗ −XY T )

∥∥
F

≤ 2λ+ C∞
λ
√
µ3r3κ5

√
p

.

(17)

The last inequality is due to the fact that M∗ is a fea-
sible solution to the SDP (5) (which implies that both
Z and M∗ are within distance λ from M), combined
with the last inequality in (13).

Combining (14), (15) and (17), it follows that we only
need to bound ‖PT⊥(∆)‖F . We will indeed show a
stronger bound, on the quantity ‖PT⊥(∆)‖∗, which is
always ≥ ‖PT⊥(∆)‖F .

The bulk of the argument is thus in bounding
‖PT⊥(∆)‖∗. The key claim is the following, relating
this term to the matrices U, V (defined using the SVD
XY T = UΣV T ).
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Claim 1. We have

‖PT⊥(∆)‖∗ ≤ ‖XY T + ∆‖∗ − ‖XY T ‖∗ − 〈UV T ,∆〉.

Proof of Claim 1. By definition, for any W ∈ T⊥ with
‖W‖ ≤ 1, we have that UV T +W is in the subgradient
of ‖·‖∗ at XY T . Thus for any such W , we have∥∥XY T + ∆

∥∥
∗ ≥

∥∥XY T∥∥∗ + 〈UV T +W,∆〉.

The observation is that we can pick W such that
〈W,∆〉 = ‖PT⊥(∆)‖∗. This is well-known, and follows
by choosing W using the SVD directions of PT⊥(∆)
(and this will lie entirely in T ). Rearranging now im-
plies the claim.

The next claim shows the following bound.

Claim 2. ‖XY T + ∆‖∗ − ‖XY T ‖∗ ≤ Cop 2rλκ
p .

Proof of Claim 2. Since Z = XY T+∆ is the optimum
solution to the SDP (5) and M∗ is another feasible
solution, we have (using also (13) from Lemma 1),

‖Z‖∗ ≤ ‖M
∗‖∗

≤
∥∥M∗ −XY T∥∥∗ +

∥∥XY T∥∥∗
≤ Cop

2rλκ

p
+
∥∥XY T∥∥∗

(18)

Rearranging now implies the claim.

Using the two claims, it follows that our goal should
be to prove that 〈UV T ,∆〉 is not too negative. This
is done somewhat indirectly.

Claim 3. From our choice of λ, we have:

‖PΩ(XY T + ∆−M)‖2F ≤ ‖PΩ(XY T −M)‖2F . (19)

Proof of Claim 3. Because Z = XY T + ∆ is feasible
for our SDP, we have that the LHS of (19) is ≤ λ2, by
our choice of λ.

Next, using the property of the non-convex solution
(part 1 of Lemma 1), we have PΩ(XY T − M) =
−λUV T + R, for some R ∈ T⊥. This implies that
‖PΩ(XY T −M)‖2F ≥ rλ2 ≥ λ2. Thus the claim fol-
lows.

We can now expand Eq. (19) to obtain

1

2
‖PΩ(∆)‖2F + 〈PΩ(XY T −M),∆〉 ≤ 0.

Plugging in part 1 of Lemma 1 again, we get

〈λUV T −R,∆〉 ≥ 1

2
‖PΩ(∆)‖2F ≥ 0.

This implies that 〈UV T ,∆〉 ≥ 1
λ 〈R,∆〉.

Now the key observation is that

|〈R,∆〉| ≤ |〈PT⊥R,PT⊥∆〉|+ |〈PTR,PT∆〉|

≤ λ

2
‖PT⊥∆‖∗ +

72κλ

n5
‖PT∆‖∗. (20)

This immediately implies that

−〈UV T ,∆〉 ≤ 1

2
‖PT⊥∆‖∗ +

72κ

n5
‖PT∆‖∗.

Plugging this into Claim 1 and using Claim 2, we have
that

‖PT⊥(∆)‖∗ ≤ Cop
2rλκ

p
+

1

2
‖PT⊥∆‖∗ +

72κ

n5
‖PT∆‖∗

=⇒ ‖PT⊥(∆)‖∗ ≤ Cop
4rλκ

p
+

144κ

n5
‖PT∆‖∗. (21)

This is where we crucially used the factor of 1/2 from
part 1 of Lemma 1.

Plugging this back into (16) and using (17) along with
the fact that ‖·‖F ≤ ‖·‖∗ < n‖·‖F , we obtain:

‖PT (∆)‖F ≤
√

32κ

p

(
Cop

4rλκ

p
+

144κ

n5
‖PT∆‖∗

+ 2λ+ C∞
λ
√
µ3r3κ5

√
p

)
.

Simplifying, we get

‖PT (∆)‖F
(

1− 900κ3/2

√
pn4

)
≤ 16rλκ3/2

p

(
2Cop√
p

+ C∞
√
κ3µ3r3

)
.

Using the fact that n is large enough, the coefficient
on the LHS is > 1/2, we get

‖PT (∆)‖F ≤
32rλκ3/2

p

(
2Cop√
p

+ C∞
√
κ3µ3r3

)
.

(22)

Combining equations (22) and (21) with (14), the the-
orem follows.

4 Principal Component Regression

We now present the application of our results on ma-
trix completion to the PCR problem. Recall that we
have an unknown rank r covariate matrix M∗, and
we are given a perturbed, partially observed version of
M∗, which we will denote by PΩ̃(M) (see Section 2.2).
Also, as before, Ω denotes the random part of the ob-
served indices, and Ω̃ is the given set of indices, where
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Ω is appended with some (adversarially chosen) subset
of indices.

Recall also that our goal is to find a β̂ whose MSE
1
n‖M

∗β∗ −M∗β̂‖ is minimized.

Approach of Agarwal et al. (2019) The work of
Agarwal et al. (2019) studies a natural approach for
PCR, when we are given PΩ(M) (and not the projec-

tion to Ω̃). The idea is to first “complete” and denoise
this matrix, thus obtaining a low-rank estimate M̂ for
M∗, and then using ordinary least squares with M̂, y
to obtain β̂.

They then prove that the MSE of this β̂ can be
bounded in terms of an appropriate function of the
error (M̂ −M∗) in estimating M∗. To obtain M̂ , they
prove that simply using the best rank-r approxima-
tion of the matrix 1

pPΩ(M) suffices. This procedure
is referred to as hard singular-value thresholding, or
HSVT.

The semi-random setting. The issue with HSVT
is that it crucially relies on 1

pPΩ(M) being an “unbi-
ased estimator” of M , and since the error M −M∗ is
i.i.d. Gaussian, also of M∗. The guarantee for HSVT
would completely fail to hold if Ω̃, for instance, is im-
balanced so that entries in some columns have a prob-
ability > p of being revealed. We will demonstrate this
also in our experiments (Section 5). Our main idea is
thus to replace the HSVT with the noisy matrix com-
pletion subroutine developed in Section 3.

We start by presenting our overall algorithm for PCR.
The algorithm assumes knowledge of n, and more cru-
cially, of r and σ. (As discussed in Agarwal et al.
(2019), when r � n, dividing the input randomly and
performing cross validation is a general way to over-
come this issue.)

Algorithm 1 PCR via Matrix Completion

Input: A matrix PΩ̃(M) with missing entries and
noise with variance σ2.
Output: A feature weight vector β̂

1: Solve the SDP 5 (using σ) and get the optimal
solution Z

2: Define Z(r) ← rank-r approximation of Z (ob-
tained via SVD)

3: Carry out ordinary least squares using Z(r) and
the given y, return the obtained β̂

We show the following result.

Theorem 2. Suppose the ground truth matrix M∗

has rank r and has a decomposition that satisfies the
properties described in Section 2. Suppose also that

the noise parameter σ satisfies the conditions of The-
orem 1. Finally, suppose the values y satisfy the fol-
lowing, for some unknown β∗:

Yi = M∗i,.β
∗ + φi + εi,

where φi is a model mismatch parameter. Then with
high probability, the output β̂ of Algorithm 1 satisfies

MSE(β̂) ≤ 4γ2r

n
+

20 ‖φ‖22
n

+
3 ‖β∗‖22
n

(
4C2κ6r6µ4σ2n2log n

p2

)
.

where γ is the variance of the noise in the regression
model and the rest of the parameters are defined as in
previous sections.

Remark. In our proof below as well as in previous
works on robust PCR, we recover the incomplete ma-
trix before training the regression model rather than
directly approximating the target Mβ. The reason for
this is partly that the top r components of M must be
estimated either directly or indirectly, and bounding
the error seems to require bounding the error in this
estimation.

4.1 Proof of Theorem 2

We show that a slight modification of the proof
of Agarwal et al. (2019), combined with our argument
from Section 3 yields the theorem.

At a high level, the argument in Agarwal et al. (2019)
proceeds by proving an upper bound on the MSE in
terms of ‖β∗‖ and the error ‖M̂ −M∗‖, where M̂ is
the completed matrix. However, the proof uses the fact
that M̂ is also of rank r. This is the reason we use Z(r)

instead of the SDP solution Z itself in Algorithm 1.

A simple lemma shows that ‖Z(r)−M∗‖ is also small.

Lemma 2. Let Z(r) be the best rank-r approximation
of Z (where r = rank(M∗)), as computed in the algo-
rithm. Then with high probability, we have∥∥∥Z(r) −M∗

∥∥∥
F
≤ 2C · κ

3r3µ2nσ
√

log n

p
. (23)

The proof is based on using the matrix XY T from
Section 3 to show that Z has a good low-rank approx-
imation. The proof is deferred to Section A of the
supplement.

We can thus prove our main result of the section.

Proof of Theorem 2. We invoke the proof of Theorem
6 in Agarwal et al. (2019). This relies on the fact that
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the estimate M̂ is rank r (denoted Â in the paper; it
is the result of HSV T on the normalized matrix). In
our case, we can carry out the same arguments with
Z(r) instead of Â. This is used to obtain: (see Eq.
(29) of Agarwal et al. (2019))

nMSE(β̂) ≤ 4γ2r + 3‖(Z(r) −M∗)β∗‖22 + 20‖φ‖22.

To obtain the desired bound from this, we can use
Hölder’s inequality, which yields:∥∥∥(Z(r) −M∗

)
β∗
∥∥∥2

2
≤ ‖β∗‖22

∥∥∥Z(r) −M∗
∥∥∥2

F

This along with the bound above gives us

1

n

∥∥∥Z(r)β̂ −M∗β∗
∥∥∥2

2
≤ 4γ2r

n
+

20 ‖φ‖22
n

+
3 ‖β∗‖22
n

∥∥∥Z(r) −M∗
∥∥∥2

F

Combining this with Lemma 2 completes the proof of
the theorem.

5 Experiments

In this section we empirically evaluate our results on
matrix completion and the application to PCR using
synthetic datasets. Additional experiments are de-
ferred to section A of the supplement.

5.1 Matrix completion

We first compare the error rates of the solutions to
SDPs (5) (elementwise constrained) and (9) (uncon-
strained) with uniformly random observations with
varying noise levels (measured in variance σ). The
error is measured as ‖Z −M∗‖F /‖M∗‖F where Z is
the solution to each SDP and M∗ is the ground truth
matrix. Here we consider a ground truth matrix with
n = 100 and r = 5 where each singular value is 1(figure
1). Covariates are sampled with probability p = 0.4
and results are averaged over 5 iterations. λ in SDP
(9) is set to 5σ

√
np.

When the covariates are observed uniformly at ran-
dom, as seen in the figure 1, solving the SDP (5) gives
slightly worse error compared to the SDP from (9),
which is known to give the tight bounds.

In the second experiment, we compare the error rates
of the SDP (5) and HSVT with random and semi-
random observations. Similar to the previous experi-
ment, error is measured in Frobenius norm scaled by
1/‖M∗‖F with varying noise levels. We consider two
ground truth matrices, with ranks 1 and 5. Each co-
variate is first observed with probability 0.4 then first
90 rows of first 30 columns are opened later as addi-
tional observations. The results are averaged over 5
iterations (figure 2).
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Figure 1: Scaled Frobenius norm error of recovered
matrices when observations are uniformly random.

Error rates of HSVT are higher in general than those
obtainable via the SDP. Further, the gap between the
random and semi-random cases is much worse in the
case of HSVT. This suggests that the solutions to el-
ementwise constrained SDP (5) remain stable under
semirandom perturbation.

5.2 PCR using matrix completion vs. PCR
with HSVT

We compare the performance our algorithm with
HSVT in principle component regression with covari-
ates observed with random and semi-random manner.
Similar to the experiments in the previous section we
generate ground truth covariate matrices with n = 100
and r = 1, 5 (M∗). We generate a regression coefficient
vector β∗ of size n. In rank 1 case each covariate is
observed with probability p = 0.4 at first then first 90
rows of first 30 columns are opened later as additional
observations. In rank 5 case each covariate is observed
with probability p = 0.5 at first then every row of first
10 columns is opened later as additional observations.
We evaluate the regression error as in equation 4 for
the recovered matrices using our algorithm and HSVT
with varying noise levels (figure 3). The results are
average over 5 iterations.

Regression error rates using HSVT imitate the error
rates displayed in matrix completion with the same
technique while replacing the HSVT matrix by the so-
lution to elementwise constrained SDP (5) maintains
stable regression error rates.

6 Conclusion

We investigate the principal component regression
problem with noisy and missing entries, where the
set of observed entries is not i.i.d., but comes from
a semirandom model. In this case, existing algorithms
based on spectral methods fail, and our contribution
is a semidefinite programming (SDP) based algorithm
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Figure 2: Comparison of scaled Frobenius norm error
of recovered matrices when observations are random
and semirandom.

that is robust to such cases. The key technical contri-
bution in this paper is an analysis of matrix completion
using an elementwise constrained SDP and we develop
the first recovery bounds under noisy and semiran-
dom observations. We complement our results with
experiments demonstrating the pros and cons of our
approach.
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