
Greedy Sampling for Clustering in the
Presence of Outliers

Aditya Bhaskara, Sharvaree Vadgama and Hong Xu

NeurIPS 2019



Overview

Introduction

Prior Work

Main Results

Outline of Proofs

Experiments



Clustering

One of the fundamental tasks in data analysis

Tale of many formulations: k-means, k-center, k-median,
hierarchical clustering, . . .

Focus of the paper: clustering when data has outliers



Definitions: k-center

Problem
Given points X in a metric space, find a set C with k “centers”
so as to minimize

max
u∈X

d(u,C)

[
Recall: d(u,C) := min

c∈C
d(u, c)

]

I Find least r so that every point in X is dist ≤ r from some
point in C

I Gonzales algorithm. “Furthest point traversal”. Iteratively
add point in X furthest from current centers

I Known to be a factor 2 approximation



Definitions: k-means

Problem
Given points X in a metric space, find a set C with k “centers”
so as to minimize∑

u∈X
d(u,C)2

[
Recall: d(u,C) := min

c∈C
d(u, c)

]

I Classic problem; best approximation factor ≈ 6.357..

I Lot of literature on heuristics. Lloyd’s “k-means”
algorithm (unfortunately no guarantees)

I k-means++: decent worst-case bound of O(log n), good
initializer for Lloyd’s [“Smooth” analog of furthest point
traversal: add points w.p. ∝ d(u,C)2]



What if we have outliers?

What if some of the data points are outliers?

Suppose outliers are far away from true clusters..

I Furthest point traversal can be really bad! (only picks
outliers)

I k-means++ places most of prob mass on outliers

Greedy sampling algorithms simple & effective, but not robust

Main result: Simple modifications of these algorithms lead to
guarantees when data has outliers



Formulations

Clustering with outliers

Suppose the input X = Xin ∪Xout (unknown partition), and
suppose |Xout| ≤ z, for some parameter z. Given X, find
partition X = X ′

in +X ′
out with |X ′

out| ≤ z, s.t. k-clustering
objective on X ′

in is comparable to objective on Xin

Note. In some sense the gold standard

Common relaxations in applications – bi-criteria

I May be fine to regard some more points as outliers
(X ′

in = O(z))

I Might also be OK to return > k centers



Prior work: robust clustering

1. Very well studied problem (given ubiquity of clustering)

2. k-center with outliers classic problem

3. k-means/median – only bi-criteria known until recently

4. Recent result [Krishnaswamy et al. 2018]: can obtain
constant factor approximation (no loss in k, z)

Problem solved? Yes in theory, but algorithms complicated;
Can iterative greedy methods be made robust?



Main results: k-center

Algorithm: robust furthest point traversal

1. Guess r (optimum value), initizalize S = ∅
2. For k iterations: add u ∈ X to S, where u is a random

point in X \B(S, r)

I.e., add random point not-too-close to current set

Theorems – bi-criteria guarantees

I Given dataset X and bound z on #(outliers), algorithm
obtains 2-approx to objective, and violates constraint on z
by a factor (log n)

I If allowed to pick ck centers, we get 2-approx to objective,
violate bound on z by factor (c+ 1)/c



Main Results: k-means

Algorithm: thresholded k-means++

For k iterations: add u ∈ X to S, with probability

pu ∝ min{β, d(u, S)2}

Theorems – bi-criteria guarantees

For appropriate choice of β, we have

I Set of centers obtained give O(log n) approximation to
k-means objective, while violating bound on z by factor
O(log n)

I If allowed to pick ck centers, we get O(1) approximation to
objective, with ≈ (1 + c)/c violation in bound on z



Remarks

I Algorithms simple modifications of original greedy methods

I Theorems generalize the “non-robust” versions

I Trade-offs between #(centers) and violation of z

I Proofs based on potential function arguments



Outline of Proofs: k-center

The key step is to define the appropriate potential function. To
this end, let wt denote the number of times that one of the
outliers was added to the set S in the first t iterations. I.e.,
wt = |Xout ∩ St|. The potential we consider is now:

Ψt :=
wt|Ft ∩Xin|

nt
. (1)

Lemma
Let St be any set of centers chosen in the first t iterations, for
some t ≥ 0. We have

Et+1 [Ψt+1 −Ψt | St] ≤
z

nt
.



Outline of Proofs: k-means

For any set of centers C, we define

τ(x,C) = min

(
d(x,C)2,

β ·Opt

z

)
(2)

The key to the analysis is the observation that instead of
attempting to bound the k-means objective, it suffices to bound
the quantity

∑
x∈X τ(x, S`).



Outline of Proofs: k-means

Lemma
Let C be a set of centers, and suppose that τ(X,C) ≤ α ·Opt.
Then we can partition X into X ′

in and X ′
out such that

1.
∑

x∈X′
in
d(x,C)2 ≤ α ·Opt, and

2. |X ′
out| ≤ αz

β .

Theorem
Running T-kmeans++ for k iterations outputs a set Sk that
satisfies

E[τ(X,Sk)] ≤ (β +O(1)) log k ·Opt.



Outline of Proofs: k-means

Theorem
Consider running T-kmeans++ for ` = (1 + c)k iterations, where
c > 0 is a constant. Then for any δ > 0, with probability ≥ δ,
the set S` satisfies

τ(X,S`) ≤
(β + 64)(1 + c)Opt

(1− δ)c
.



Experiments

K-center experiments on synthetic data

Figure: Cluster recall for the three algorithms, when k = 20, z = 100
and n = 10120. The x axis shows the number of clusters we pick.



Experiments

K-means experiments on synthetic data

Figure: The empirical cluster recall for the T-kmeans++ algorithm
compared to prior heuristics. Here k = 20, z = 2000, n = 12020. The
x axis shows the number of clusters we pick.



Experiments

K-means experiments on real datasets wherein 2.5% of data is
corrupted.

Dataset k KM recall TKM recall KM objective TKM objective
NIPS 10 0.960 0.977 4173211 4167724

20 0.939 0.973 4046443 4112852
30 0.924 0.978 3956768 4115889

Skin 10 0.619 0.667 7726552 7439527
20 0.642 0.690 5936156 5637427
30 0.630 0.690 5164635 4853001

MNIST 10 0.975 0.977 159129783 148848993
20 0.969 0.974 154588753 142313226
30 0.968 0.976 150851200 139026059

Table showing outlier recall for KM (k-means++) and TKM
(T-kmeans++) along with the k-means cost.
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