Topics (April 7th).

- Hardness Amplification
- Alternate Characterization of NP.
- Probabilistically Checkable Proofs

Hardness Amplification: Example of INDSET.

Theorem: If INDSET is hard to approximate to a factor of 1.001, then it is also hard to approximate to a factor 1000.

Proof: Tensored graph.

General Technique: “Parallel repetition”.

NP as a prover-verifier “game”:

Classic definition: a language L is said to be in NP if there exists an algorithm A s.t.
1) \(\forall x \in \mathcal{L}, \exists \text{ a witness } w \text{ (of poly size)} \) such that \(A(x, w) = 1 \), and

2) \(\forall x \in \mathcal{L}, \text{ there is no } w \text{ s.t. } A(x, w) = 1. \)

A is a "witness verifier."

E.g. for SAT, A could simply check if w is a satisfying assignment.

Verifier \hspace{1cm} Prover

- has \(\phi \)
- runs \(A(\phi, w) \) and accepts if w satisfies all clauses.

PROBABILISTIC CHECKING: Verifier does not check all clauses. He simply checks one clause at random (lazy verifier)
KEY: Prover does not know which clause verifier will check!

Best strategy for prover: provide an assignment that satisfies as many clauses as possible.

Prover solves max-SAT!

Success probability $\equiv \frac{1}{m} \cdot \text{OPT}(\text{max-SAT}(\phi))$

\[\Downarrow \]

total # of clauses.

Note: The Lazy prover above:

- Uses $O(\log m)$ "bits of randomness"
- Probes at most 3 bits of proof
- Accepts w.p. $\leq \frac{1}{m}$ if ϕ is SAT
- Accepts w.p. $\geq 1 - \frac{1}{m}$ if ϕ is not SAT.

assuming the witness is correct
Definition: An \((r, q)\)-verifier is one that uses \(r\) bits of randomness, and queries \(q\) bits of the proof before accepting/rejecting. [it could do an arbitrary polynomial amount of computation involving \(\phi\) and these bits]

Defn: A language \(L\) has a PCP \((r, q)\) if there exists an \((r, q)\)-verifier \(A\) s.t.:

1. \(\forall x \in L\), there exists a \(w\) s.t.
 \[
 \Pr[A(x, w) = 1] = 1.
 \]
2. \(\forall x \notin L\), there is no \(w\) s.t.
 \[
 \Pr[A(x, w) = 1] \geq \frac{1}{2}.
 \]
 (equivalently, \(\forall w, \Pr[A(x, w)] < \frac{1}{2}\))

PCP Theorem: (ALMSS 92).

Every language \(L \in \text{NP}\) has a PCP \((O(\log n), 0(1))\).
"If a way of writing proofs s.t. even a lazy prover "succeeds" w.p. $\geq \frac{1}{2}$" [Error correction "built-in"]

We now show: PCP Theorem \Rightarrow 3-SAT is hard to approximate to a factor $1+\varepsilon$, for some const $\varepsilon > 0$ (depends on the $O(1)$ term in PCP(..., ...))

Proof: Let L be some NP-complete language, and consider an $(O(\log n), O(1))$ verifier.

- The algorithm can possibly only query $O(\log n) = o(1)$ bits of w [no matter what the random ε-bits are]

- It makes its decision based on q of these bits. I.e., based on whether:

$$C_{\phi, x}(w_{i_1}, w_{i_2}, \ldots, w_{i_q}) = 1,$$ for some
- We can encode $C_R(\ldots)$ as a SAT formula of size $2^q \Rightarrow 3$-SAT of size $\approx q \cdot 2^q \approx O(1)$.

Thus: since we start with a good verifier, we get that

- If $x \in L$, "final" 3-SAT formula is satisfiable.
- If $x \notin L$, final 3-SAT formula has at least a $\frac{1}{2^q} \cdot \frac{1}{2 \cdot 2^q}$ fraction of clauses being unsat.

[Completes the proof]