
1 Problem 9

The problem tries to formally capture errors that frequently occur in implemen-
tations of the multiplicative wt update (MWU) method.

Part (a) says that “roundoff errors” can be very dangerous.
Specifically, suppose we have just two experts (A and B), and suppose that

A makes a mistake for the first t = (1/η) log(1/ε) rounds, while B is correct
during those rounds, and is wrong thereafter. After the first t rounds, due to a
roundoff error the probability qA becomes zero, while qB = 1. Subsequently, qB
will reduce by e−η, but since we normalize, and since qA = 0, qB will be reset
to 1, leading to always picking B.

Thus after T � t rounds, the best expert (A) makes only t mistakes, while
the algorithm makes T − t mistakes. Since we can pick T/t larger than any
desired constant, we have a regret of T − o(T ).

Part (b) pursues the idea that we should not store the probabilities (due
to roundoff issues as above), but instead store the number of mistakes. This
way, in each round, we can compute the probabilities ‘on the fly’, and make a
decision.

How is p
(i)
t related to the number of mistakes m

(i)
t ? We saw this in class:

p
(i)
t =

e−ηm
(i)
t∑

j e
−ηm(j)

t

.

Part (c) pursues the ‘on the fly’ idea above. Suppose using the mt values,
we compute qt which approximates pt. (Note that this way, we can get rid of
issues like the one in part (a).)

Suppose
∑
i |p

(i)
t −q

(i)
t | < ε. Then we wish to claim that the mistake probabil-

ity when sampling according to qt is almost the same as the mistake probability
when sampling according to pt (which is the standard MWU).

Let S be the set of experts who made a mistake in the t’th step. Then the

two mistake probabilities are
∑
i∈S q

(i)
t and

∑
i∈S p

(i)
t . The difference between

these two is
∑
i∈S(q

(i)
t − p

(i)
t ), which is clearly ≤

∑
i |p

(i)
t − q

(i)
t | < ε.

The standard MWU has a mistake bound of (1 + η) minim
(i)
T +O(logN/η).

Now we have an additional probability at most ε of making an error. This gives
the extra +εT term.

Part (d) tries to improve on this bound, knowing that choices are binary,

especially in the case when minim
(i)
T is small.

Set η = 1/10, as in the problem statement, and consider step t. The key is
the following: as we have binary predictions, there will be a set S0 of experts
who predict 0 and a set S1 who will predict 1. Precisely one set gets it right,
while the others make a mistake. Let pt,0 be the probability that the infinite
precision MWU algorithm predicts 0 and pt,1 the probability that it predicts 1.
Now in part (c), if we can estimate these two numbers to an accuracy ε = 1/T ,
then we get the desired bound! (I.e., we don’t need all the pt’s.)
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Now, how can we estimate pt,0? We use the idea of part (b) to store the

number of mistakes. We know the expression for pt,0 =
∑
i∈S0

p
(i)
t , where pt’s

are as in part (b). We can compute each p
(i)
t to an additive 1/(NT ) using only

O(log(NT )) word-size (exercise), and thus we can compute the sum over S0 to
an additive 1/T error using the same precision.
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