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Abstract
In this paper, we study the response of large models from
the BERT family to incoherent inputs that should confuse
any model that claims to understand natural language. We de-
fine simple heuristics to construct such examples. Our exper-
iments show that state-of-the-art models consistently fail to
recognize them as ill-formed, and instead produce high con-
fidence predictions on them. Finally, we show that if models
are explicitly trained to recognize invalid inputs, they can be
robust to such attacks without a drop in performance.

Introduction
The BERT family of models (Devlin et al. 2019; Liu et al.
2019, and others) form the backbone of today’s NLP sys-
tems. At the time of writing, all eleven systems deemed to
outperform humans in the GLUE benchmark suite (Wang
et al. 2018) belong to this family. Do these models under-
stand language? Recent work suggests otherwise. For exam-
ple, Bender and Koller (2020) point out that models trained
to mimic linguistic form (i.e., language models) may be de-
ficient in understanding the meaning conveyed by language.

In this paper, we show that such models struggle even
with the form of language by demonstrating that they force
meaning onto token sequences devoid of any. For instance,
consider the natural language inference (NLI) example in
fig. 1. A RoBERTa-based model that scores ∼ 89% on the
Multi-NLI dataset (Williams, Nangia, and Bowman 2018)
identifies that the premise entails the hypothesis. However,
when the words in the hypothesis are sorted alphabetically
(thereby rendering the sequence meaningless), the model
still makes the same prediction with high confidence. In-
deed, across Multi-NLI, when the hypotheses are sorted al-
phabetically, the model retains the same prediction in 79%
of the cases, with a surprisingly high average confidence of
∼ 95%! We argue that a reliable model should not be insen-
sitive to such a drastic change in word order.

We study the response of large neural models to de-
structive transformations: perturbations of inputs that ren-
der them meaningless. Figure 1 shows an example. We de-
fine several such transformations, all of which erase mean-
ing from the input text and produce token sequences that are
not natural language (i.e., word salad).
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Premise In reviewing this history, it’s important
to make some crucial distinctions.

Original Making certain distinctions is
Hypothesis imperative in looking back on the past.

ENTAILMENT with probability 0.99

Sorted back certain distinctions imperative in
Hypothesis is looking making on past the .

ENTAILMENT with probability 0.97

Figure 1: An Example for Natural Language Inference from
the MNLI (-m) validation set. For the original premise and
hypothesis, RoBERTa fine-tuned model makes the correct
prediction that the premise entails the hypothesis. Alphabet-
ically sorting the hypothesis makes it meaningless, but the
model still retains the prediction with high confidence.

We characterize the response of models to such transfor-
mations using two metrics: its ability to predict valid labels
for invalid inputs, and its confidence on these predictions.
Via experiments on three tasks that constitute the GLUE
benchmark, we show that the labels predicted by state-of-
the-art models for destructively transformed inputs bear high
agreement with the original ones. Moreover, the models are
highly confident in these predictions. In fact, we find that
models trained on meaningless examples perform compara-
bly to the original model on unperturbed examples, despite
never having encountered any well-formed training exam-
ples. These observations suggest that, far from actually un-
derstanding natural language, today’s state-of-the-art mod-
els have trouble even recognizing it.

Finally, we evaluate strategies to mitigate these weak-
nesses using regularization that makes models less confident
in their predictions, or by allowing models to reject inputs.

In summary, our contributions are1:
1. We define the notion of destructive input transformations

to test the ability of text understanding models at process-
ing word salad. We introduce nine such transformation
functions that can be used by practitioners for diagnostic
purposes without requiring additional annotated data.

1Our code is available at https://github.com/utahnlp/word-salad



Dataset Transform Input Prediction

Natural
Language
Inference

MNLI

P: As with other types of internal controls, this is a cycle of activity, not an
exercise with a defined beginning and end.

Original H: There is no clear beginning and end, it’s a continuous cycle. Ent (99.48%)
Shuffled H′

1: , beginning end no there clear ’s continuous is a it and cycle . Ent (99.60%)
PBSMT-E H′

2: The relationship of this is not a thing in the beginning . Ent (94.82%)

Paraphrase
Detection

QQP

Q1: How do I find out what operating system I have on my Macbook?

Original Q2: How do I find out what operating system I have? Yes (99.53%)
Repeat Q2: out out i find out what out out i find? Yes (99.98%)
CopySort Q2: ? do find have how i i macbook my on operating out system what Yes (98.52%)

Sentiment
Analysis

SST-2

Original A by-the-numbers effort that won’t do much to enhance the franchise. –ve (99.96%)
Sort a by-the-numbers do effort enhance franchise much n’t that the to wo. –ve (99.92%)
Drop a–n won do to franchise. –ve (99.96%)

Table 1: We generate invalid token sequences using destructive transformations that render the inputs meaningless. A fine-
tuned RoBERTa model assigns a high probability (in parenthesis) to the same label as the original example. For NLI, the model
chooses between entail, contradict, and neutral. For sentiment analysis, possible labels are –ve or +ve. For paraphrase detection,
model answers if the two texts are paraphrases of each other (Yes or No). The appendix contains more such examples.

2. We show via experiments that today’s best models force
meaning upon invalid inputs; i.e., they are not using the
right kind of information to arrive at their predictions.

3. We show that simple mitigation strategies can teach mod-
els to recognize and reject invalid inputs.

Tasks and Datasets
Our goal is to demonstrate that state-of-the-art models based
on the BERT family do not differentiate between valid and
invalid inputs, and that this phenomenon is ubiquitous. To
illustrate this, we focus on three tasks (table 1), which also
serve as running examples.

Natural language inference (NLI) is the task of deter-
mining whether a premise sentence entails, contradicts, or
is unrelated to a hypothesis. We use the Multi-NLI (MNLI,
Williams, Nangia, and Bowman 2018) and SNLI (Bowman
et al. 2015) datasets.

Paraphrase detection involves deciding if two sentences
are paraphrases of each other. For this task, we use the
Microsoft Research Paraphrase Corpus (MRPC, Dolan and
Brockett 2005), and Quora Question Pair (QQP) dataset2.

Sentiment classification requires predicting whether a
sentence has a positive or negative sentiment. We use the
Stanford Sentiment Treebank (SST-2, Socher et al. 2013).

Destructive Transformations
There has been a growing interest in studying input pertur-
bations (e.g., Ebrahimi et al. 2018; Alzantot et al. 2018; Wal-
lace et al. 2019; Jin et al. 2020; Ren et al. 2019; Garg et al.
2020). Given a model for a task, some input perturbations
preserve labels. For example, a true paraphrase of a sentence
should not change its sentiment. Certain other perturbations

2https://www.quora.com/q/quoradata/First-Quora-Dataset-
Release-Question-Pairs

force labels to change in controlled ways. For example, a
negated hypothesis should change the label in the NLI task.

In this paper, we focus on a new class of perturbations—
destructive transformations—which render inputs invalid.
Because any informative signal in the input is erased, the
transformed examples should not have any correct label.3

For example, in the NLI task, a hypothesis whose words
are shuffled is (with high probability) not a valid English
sentence. The transformed hypothesis cannot contain infor-
mation to support an entail or a contradict decision. More-
over, it is not a sentence that is unrelated to the premise—it
is not a sentence at all! Indeed, the transformation creates an
example that lies outside the scope of the NLI task.

Yet, the premise and transformed hypothesis fit the in-
terface of the problem. This gives us our key observation:
While NLP models are typically trained to work on well-
formed sentential inputs, they accept any sequence of strings
as inputs. Of course, not all token sequences are meaningful
sentences; we argue that we can gain insights about models
by studying their response to meaningless input sequences
(i.e., invalid inputs) that are carefully crafted from valid in-
puts. One advantage of this protocol of using transforma-
tions is that we do not need to collect any new data and can
use original training and validation sets.

Let us formally define destructive transformations. Con-
sider a task with textual input x ∈ X and an oracle function
f that maps inputs to labels y ∈ Y . A destructive transfor-
mation π : X → X is a function that operates on the inputs
x to produce transformed inputs x′ = π(x) such that f(x′)
is undefined. That is, none of the labels of the task (i.e., the
set Y ) can apply to x′.

Destructive transformations can be chained: if π1 and π2
are destructive transformations for a given input x, then

3We refer to such changes to inputs as transformations, instead
of perturbations (as in adversarial perturbations), to highlight the
fact that change in the inputs need not be small.



Name Description

Sort Sort the input tokens
Reverse Reverse the token sequence
Shuffle Randomly shuffle tokens

CopySort Copy one of the input texts and then sort
it to create the second text. (Only appli-
cable when the input is a pair of texts)

Table 2: Lexical-overlap based transformations

π1(π2(x)) is also a destructive transformation. We can think
of such chaining as combining different diagnostic heuris-
tics. For tasks whose input is a pair of texts, x = (x1, x2),
transforming either or both the components should destroy
any meaningful signal in the input x. For example, in the
NLI task, given an input premise and hypothesis, destroying
either of them renders the example invalid. For tasks with
a pair of texts as input, for our analyses, we only transform
one of the inputs, although there is no such requirement.

Next, let us look at different classes of transformations,
which work with tokenized inputs.

Lexical Overlap-based Transformations
These transformation operators preserve the bag-of-words
representation of the original input but change the word or-
der. They are designed to diagnose the sensitivity of mod-
els to the order of tokens in inputs. Table 2 shows the four
lexical-overlap based transformations we define here.

We ensure that Shuffle sufficiently changes the input
by repeatedly shuffling till no bigram from original input
is retained. The CopySort operation only applies to tasks
that have multiple input texts such as NLI and paraphrase
detection. As an example, for the NLI task, given a premise-
hypothesis pair, it creates a transformed pair whose hypoth-
esis is the alphabetically sorted premise.

Gradient-based Transformations
These transformations seek to study the impact of remov-
ing, repeating, and replacing tokens. To decide which to-
kens to replace, they score input tokens in proportion to
their relative contribution to the output. One (admittedly in-
efficient) way to compute token importance is to calculate
the change in output probability when it is removed. Recent
work (e.g., Ebrahimi et al. 2018; Feng et al. 2018) suggests
that a gradient-based method is a good enough approxima-
tion and is much more efficient. We adopt this strategy here.

Given a trained neural modelM, and the task loss func-
tion L, the change in the loss for the ith input token is ap-
proximated by the dot product of its token embedding ti and
the gradient of the loss propagated back to the input layer
∇ti,ML. That is, the ith token is scored by tᵀi∇ti,ML.

These token scores approximate the relative importance
of a token; a higher score denotes a more important token.
We use the tokens in the bottom r% as per their score—the
least important tokens—to define our gradient-based trans-
formations. We use r = 50%. Table 3 summarizes the trans-
formations that use importance ranking of the tokens.

Name Description

Drop Drop the least important tokens.
Repeat Replace the least important tokens with one

of the most important ones.
Replace Replace the least important tokens with ran-

dom tokens from the vocabulary
CopyOne Copy the most important token from one

text as the sole token in the other. (Only ap-
plicable when the input is a pair of texts)

Table 3: Gradient-based transformations

Statistical transformation: PBSMT
Recent analyses on the NLI task have shown that neural
models rely excessively on shallow heuristics (Gururangan
et al. 2018; Poliak et al. 2018; McCoy, Pavlick, and Linzen
2019). In particular, Gururangan et al. (2018) showed that
annotation artifacts lead to certain words being highly cor-
related with certain inference classes. For example, in the
SNLI data, words such as animal, outdoors are spuriously
correlated with the entail label.

Inspired by this observation, we design a transforma-
tion scheme that creates invalid examples, and yet exhibit
such statistical correlations. We employ a traditional phrase-
based statistical machine translation (PBSMT) system to
generate examples that use phrasal co-occurrence statistics.

For each label in the task, we train a separate sequence
generator that uses co-occurrence statistics for that label.
For example, for the NLI task, we have three separate gen-
erators, one for each label. Suppose we have a premise-
hypothesis pair that is labeled as entail. We destroy it using
the premise as input to a PBSMT system that is trained only
on the entailment pairs in the training set. We use the Moses
SMT toolkit (Koehn et al. 2007) for our experiments.

Why should a system trained to generate a sentence that
has a certain label (e.g., an entailment) be a destructive trans-
former? To see this, note that unlike standard machine trans-
lation, we use very limited data for training. Moreover, the
language models employed (Heafield 2011) are also trained
only on examples of one class. As a result, we found that
the produced examples are non-grammatical, and often, out
of context. The hypothesis H ′

2 in table 1, generated using
PBSMT-E (i.e., PBSMT for entailments), is one such se-
quence. We refer to this transformation as PBSMT.

Are the Transformations Destructive?
To ascertain whether our nine transformations render sen-
tences invalid, we performed a crowd-sourced experiment.
Crowd workers on Amazon’s Mechanical Turk were tasked
with classifying each instance as valid or invalid, the latter
category is defined as an example that is incomprehensible,
and is therefore meaningless.

We sampled 100 invalid sentences generated by each
transformation (900 in total) and an equal number of sen-
tences from the original (un-transformed) validation sets.
For each sentence, we collect validity judgments from three
crowd workers and use the majority label. Table 4 shows the



Transformation % Invalid
Un-transformed 7.83

Sort 94.07
Reverse 95.59
Shuffle 94.20
CopySort 95.42

Avg. Lexical 94.82

Replace 91.21
Repeat 100.00
Drop 85.79
CopyOne 100.00

Avg. Gradient 94.25

PBSMT 79.92

Table 4: Results of crowdsourcing experiments where anno-
tators are asked to labels sentences as meaningful or not. We
aggregate sentence labels from three workers.

percent of sentences marked as invalid; we see that all the
transformations make their inputs incomprehensible.

Measuring Responses to Invalid Inputs
In this section, we will define two metrics to quantify model
behavior for invalid inputs. Invalid inputs, by definition, are
devoid of information about the label. Consequently, they
do not have a correct label. If the transformations are truly
destructive, a reliable model will pick one of the labels at
random and would do so with low confidence. That is, a re-
liable model should exhibit the following behavior: a) the
agreement between original predictions and predictions on
their transformed invalid variants should be random, and, b)
predictions for invalid examples should be uncertain. These
expected behaviors motivate the following two metrics.
Agreement is the fraction of examples whose prediction
does not change after applying a destructive transformation.
A model with agreement closer to random handles invalid
examples better.

For the operators designed for tasks with a pair of inputs,
namely CopySort and CopyOne, some tokens from one
of the inputs are copied into another. In such cases, mea-
suring agreement with original input is not useful. Instead,
we measure agreement with a default label. For the NLI task,
the default label is entail, because neural models tend to pre-
dict entailment when there is a lexical overlap between the
premise and hypothesis (McCoy, Pavlick, and Linzen 2019).
Following the same intuition, for paraphrase detection, the
default is to predict that the pair is a paraphrase.
Confidence is defined as the average probability of the pre-
dicted label. We want this number to be closer to 1

N , where
N is the number of classes.4

4We could alternatively define confidence using the entropy of
the output distribution. In our experiments, we found that confi-
dence, as defined here, and entropy reveal the same insights.

Dataset Accuracy Confidence
SNLI 90.87 98.38
MNLI 87.31 98.27
QQP 90.70 98.89
MRPC 89.46 98.40
SST-2 94.04 99.75

Table 5: Baseline Performance, Accuracy and Average
Confidence for RoBERTa-base on validation sets. For
MNLI, we used MNLI-matched for experiments.

Transform MNLI SNLI QQP MRPC SST2
Sort 79.1 82.6 88.3 81.1 83.3
Reverse 76.9 75.1 86.8 77.9 82.5
Shuffle 79.4 81.1 88.4 80.4 84.8
CopySort 90.5 81.3 93.5 96.8 –

Avg. Lex. 82.4 80.1 89.3 84.1 83.5

Replace 63.0 51.9 69.9 56.6 78.1
Repeat 49.7 68.5 77.1 68.1 81.3
Drop 69.4 72.7 80.4 76.7 82.5
CopyOne 80.4 83.7 98.9 100 –

Avg. Grad. 65.6 69.2 81.6 75.4 80.6

PBSMT 57.0 65.6 72.5 – 75.2

Random 33.3 33.3 50.0 50.0 50.0

Table 6: Agreement scores between predictions from trans-
formed validation set and original validation set. The closer
the numbers are to random better the model behavior is.‘–‘
means the transformation is not defined for that dataset. We
do not use PBSMT for MRPC as it is a much smaller dataset.

Experiments
For our primary set of experiments, we use RoBERTa (Liu
et al. 2019) as a representative of the BERT family, whose
fine-tuned versions have tended to outperform their BERT
counterparts on the GLUE tasks (Dodge et al. 2020). We
use the base variant of RoBERTa that is fine-tuned for three
epochs across all our experiments, using hyperparameters
suggested by the original paper. These models constitute our
baseline. Table 5 shows the accuracy and average confidence
of the baseline on the original validation sets.

Results and Observations
We apply the destructive transformation functions described
earlier to each task’s validation set. To account for the ran-
domness in the Shuffle transformation, its results are av-
eraged across five random seeds. For PBSMT on SST-2, we
use the first half sentence as input and train to predict the
second half of the sentence. Table 6 shows the agreement
results, and table 7 shows average confidence scores.

High Agreement Scores The high agreement scores show
that models retain their original predictions even when label-



MNLI SNLI QQP MRPC SST-2
Baseline 94.63 92.46 98.78 97.77 99.13
Random 33.33 33.33 50.00 50.00 50.00

Table 7: Average Confidence over predictions from trans-
formed validation set. We want the the numbers to be closer
to random (last row). Refer appendix for full results.

bearing information is removed from examples. This is a
puzzling result: the transformations render sentences mean-
ingless to humans, but the model knows the label. How can
the model make sense of these nonsensical inputs?

We argue that this behavior is not only undesirable but
also brings into question the extent to which these models
understand text. It is possible that, rather than understanding
text, they merely learn spurious correlations in the training
data. That is, models use the wrong information to arrive at
the right answer.

High Confidence Predictions. Not only do models retain
a large fraction of their predictions, they do so with high
confidence (table 7). This behavior is also undesirable: a re-
liable model should know what it does not know, and should
not fail silently. It should, therefore, exhibit be uncertain on
examples that are uninformative about the label.

Research on reliability of predictions suggests that these
models are poorly calibrated (Guo et al. 2017).

Specific transformations. Invalid examples constructed
by lexical transformations are more effective than others,
with all agreements over 80%. Examples from such trans-
formations have high lexical overlap with the original input.
Our results suggest that models do not use input token posi-
tions effectively. We need models that are more sensitive to
word order; lexical transformations can be used as a guide
without the need for new test sets.

We find that SNLI models have higher agreement scores
than MNLI ones for both gradient and statistical correlation
based invalid examples. This could mean that the former
are more susceptible to gradient-based adversarial attacks.
Moreover, the lower scores for PBSMT on the MNLI model
shows that it relies less on these statistical clues than SNLI—
corroborating an observation by Gururangan et al. (2018).

Human response to transformed inputs. Results in ta-
ble 4 show that transformed sentences are invalid. We now
perform another set of human experiments to determine if
the invalid examples generated (by transformations) make it
difficult to perform the classification task . This mimics the
exact setting that all models are evaluated on by asking hu-
mans to perform classification tasks on invalid inputs. Con-
cretely, we ask turkers to perform the NLI task on 450 de-
structively transformed inputs (50 for each transformation)
by “reconstructing the inputs to the best of their abilities”.
We found that turkers can only ‘predict’ the correct label for
invalid examples in 35% of the cases as opposed to 77% for

Dataset Accuracy ECE
Baseline 87.31 0.11
Label Smoothing 86.89 0.06
Focal Loss 86.98 0.05
Temperature Scaling 87.31 0.09

Table 8: Accuracy on the original validation set and the
Expected Calibration Error (ECE) on the validation set for
MNLI. Accuracy with temperature scaling is the same as
baseline since it is a post-training method for calibration.

B LS FL B + TS
Lexical 82.35 81.85 80.39 81.49
Gradient 60.65 59.51 60.32 59.18
PBSMT 57.02 56.30 56.49 57.04

Table 9: Average agreement for three calibration methods
on MNLI. Calibration does not improve model’s response to
invalid inputs. B: Baseline, LS: Label Smoothing, FL: Focal
Loss, B + TS: Temperature Scaling on baseline.

original un-transformed examples. These results reinforce
the message that large transformer models can make sense
of meaningless examples, whereas humans are near-random.

Analysis & Discussion
Are calibrated models more reliable? Neural networks
have been shown to produce poorly calibrated probabili-
ties, resulting in high confidence even on incorrect pre-
dictions (Guo et al. 2017). Research in computer vision
has shown that improving model calibration improves ad-
versarial robustness as well as out-of-distribution detec-
tion (Hendrycks and Gimpel 2017; Thulasidasan et al. 2019;
Hendrycks, Lee, and Mazeika 2019). Given the confidence
scores in table 7, a natural question is: Does improving the
calibration of BERT models improve their response to in-
valid examples? We answer this question by training confi-
dence calibrated classifiers using three standard methods.

First we use label smoothing, in which training is done
on soft labels, with loss function being a weighted average
of labels and uniform probability distribution (Pereyra et al.
2017). Focal loss prevents the model from becoming over-
confident on examples where it is already correct. Mukhoti
et al. (2020) showed that focal loss improves calibration of
neural models. Temperature scaling is a simple calibration
method that scales the network’s logit values before apply-
ing the softmax (Guo et al. 2017; Desai and Durrett 2020).

We use Expected Calibration Error (ECE, Naeini,
Cooper, and Hauskrecht 2015) to measure a model’s cali-
bration error. Due to space constraints, we refer the reader
to the original work for a formal definition. Better calibrated
models have lower ECE. All three methods improve cali-
bration of the original model; table 8 shows results on the
MNLI validation data. However, table 9 shows that none of
them improve model response to invalid examples.



Impact of pretraining tasks. We now investigate the im-
pact of pre-training tasks on a model’s response to in-
valid examples. Both BERT and RoBERTa use a word-
based masked language modeling (W-MLM) as the auto-
encoding objective. BERT uses Next Sentence Prediction
(NSP) as an additional pre-training task. We experiment
with other BERT variants pre-trained with different tasks:
ALBERT (Lan et al. 2019) uses Sentence Order Prediction
(SOP), SpanBERT (Joshi et al. 2020) and BART (Lewis
et al. 2020) use Span-based MLM (S-MLM) instead of
W-MLM. SpanBERT additionally uses NSP, while BART
uses a Sentence Shuffling (SS) pretraining objective. ELEC-
TRA (Clark et al. 2019) uses a Replaced Token Detection
(RTD) instead of an MLM objective.

These models are trained on different corpora, and use
different pre-training tasks. Despite their differences, the re-
sults presented in table 10 suggest that all of these models
are similar in their responses to invalid examples. These re-
sults highlight a potential weakness in our best text under-
standing systems.

Different Inductive Bias. All variants of BERT consid-
ered thus far are trained with one of the auto-encoding (AE)
objectives and perform rather poorly. This raises a question:
Would models that explicitly inject a word order based in-
ductive bias into the model perform better?

To answer this question, we consider three auto-regressive
(AR) models with a recurrent inductive bias, namely, ESIM-
Glove (Chen et al. 2017), ESIM-ELMo, and XLNet (Yang
et al. 2019). Both ESIM models are LSTM based models,
while XLNet is a transformer-based model that is trained
using an auto-regressive language modeling objective along
with Permutation LM (P-LM). ESIM-Glove does not use
any other pre-training task, while ESIM-ELMo is based on
ELMo (Peters et al. 2018) which is pre-trained as a tradi-
tional auto-regressive LM.

The results are shown in table 10. Again, the results are
similar to models trained with auto-encoding objective. Sur-
prisingly, even a strong recurrent inductive bias is unable to
make the models sensitive to the order of words in their in-
puts: all the AR models have high agreement scores (over
75%) on lexical overlap-based transformations. We refer the
reader to the appendix for more results.

Bigger is not always better. While larger BERT-like mod-
els show better performance (Devlin et al. 2019; Raffel et al.
2020), we find that same does not hold for their response
on invalid examples. Table 10 shows that larger BERT mod-
els (Large vs Base) do not improve response to invalid ex-
amples (recall that smaller agreement scores are better). We
see that both BERT variants outperform the RoBERTa coun-
terparts; BERT-base provides over 4.5% improvement over
RoBERTa-base in terms of agreement on invalid examples.

Small vs. large perturbations. Previous work on adver-
sarial robustness (Alzantot et al. 2018; Jin et al. 2020;
Ebrahimi et al. 2018) suggests that robustness of the model
to small input perturbations is desirable, meaning that a

Class Pretraining Model Agreement
AE W-MLM + NSP BERT-B 67.1

BERT-L 69.0
W-MLM RoBERTa-B 71.7

RoBERTa-L 73.5
W-MLM + SOP ALBERT-B 67.6

AE S-MLM + NSP SpanBERT-B 67.6
S/W-MLM + SS BART-B 70.0
RTD ELECTRA-B 68.8

AR P-LM XLNet-B 70.1
LM ESIM- ELMo 75.8
- ESIM- Glove 73.5

Table 10: Agreement score of different models on MNLI.
B refers to the base variant, L refers to the large one. AE
refers to models pretrained with auto-encoding objective,
AR refers to auto-regressive models. Refer text for full key.

MNLI SNLI QQP MRPC SST-2
Shuffled 84.56 89.44 92.15 84.80 91.97
Original 87.31 90.70 94.04 89.46 94.04

Table 11: Training on only invalid examples generated from
Shuffle, evaluation is on original validation data.

model’s prediction should not change for small perturba-
tions in the input. However, excessive invariance to large
input perturbations is undesirable (Jacobsen et al. 2019).
Our focus is not on small input changes, rather large ones
that destroy useful signals (i.e., destructive transformations).
The three types of transformations we discuss in this work
achieve this in different ways. We argue that language under-
standing systems should not only provide robustness against
small perturbations (adversarial robustness) but also recog-
nize and reject large perturbations (studied in this work).

Are models learning spurious correlations? The results
presented in this work raise an important question: Why does
this undesirable model behavior occur in all models, irre-
spective of the pretraining tasks, and is even seen in models
with a recurrent inductive bias? We hypothesize that this be-
havior occurs because these large models learn spurious cor-
relations present in the training datasets, studied previously
by Gururangan et al. (2018); Min et al. (2020). A simple ex-
periment substantiates this claim. So far, we trained models
on valid data and evaluated them on both valid and invalid
examples. We now flip this setting: we train on invalid inputs
generated by a transformation and evaluate on well-formed
examples from the validation sets.

Table 11 presents accuracies on the original validation ex-
amples for five datasets. We observe that models trained only
on shuffled examples perform nearly as well (within 97% for
MNLI) as the ones trained on valid examples (second row)!
These observations demonstrate that our models do not use
the right kind of evidence for their predictions, or at least, the



B + Th Ent + Th B + Invalid
MNLI 83.40/ 57.95 86.11/ 89.22 85.44/ 97.10
SNLI 88.01/ 54.68 89.65/ 93.54 90.88/ 98.41
QQP 90.25 / 29.20 90.29 / 88.72 90.08 / 95.24
MRPC 89.46 / 36.82 88.24 / 99.43 88.73 / 99.78
SST-2 90.37 / 35.79 92.66 / 95.41 92.78 / 96.35

Table 12: Comparison of mitigation strategies. First num-
ber in each cell is accuracy on original validation set. Second
number is the % of examples correctly classified as invalid.
The test set for invalid contains examples is generated with
all nine transformation functions. B refers to the baseline
model.

kind of evidence a human would use. This result should raise
further concerns about whether we have made real progress
on language understanding.

Mitigation Strategies
We evaluate three mitigation strategies to alleviate the prob-
lem of high certainty on invalid inputs. The goal is to give
models the capability to recognize invalid inputs. Two strate-
gies augment the training data with invalid examples. All
three introduce new hyperparameters, which are tuned on a
validation set constructed by sampling 10% of the training
set. The final models are then trained on the full training set.

Entropic Regularization The central problem that we
have is that the models have high certainty on invalid inputs.
To directly alleviate the issue, we can explicitly train them
to be less certain on invalid inputs. We do so by augment-
ing the loss function with a new term. Let D be the original
dataset and D

′
be its complementary invalid dataset. The

new training objective is then defined as
L(model) = LD(model) + λHD′ (model) (1)

where LD is the standard cross-entropy loss, and HD′ de-
notes the entropy of model probabilities over invalid exam-
ples. The hyperparameter λweighs the relative impact of the
two terms. Feng et al. (2018) used similar entropic regular-
ization to improve interpretability of neural models.

We initialize the model with fine-tuned weights from the
baseline model and train for three more epochs with the new
training objective. The appendix provides further details.

Thresholding Model Probabilities From our results in ta-
ble 7, we observe that although models are confident on in-
valid examples, their confidence is higher on valid ones. Fol-
lowing this, we experiment with a straightforward approach
that thresholds output probabilities to tell valid and invalid
examples apart. We used temperature scaling to ensure that
the classifier probabilities are calibrated.

This approach is parameterized by a threshold θ: if the
maximum probability of the classifier’s output is below θ,
we deem the input invalid. We used grid search in the range
[ 1N , 1.0] to find the best performing θ on a separate valida-
tion set. Here, N represents the number of labels.

Invalid as an extra class (B + Invalid) Since one of the
goals is to be able to recognize invalid inputs, we can explic-
itly introduce a new class, invalid, to our classification task.
The training objective for this newN +1 class classification
task remains the same, i.e. cross-entropy loss.

Results
With entropic regularization, we observe a significant drop
in agreement scores on invalid examples. Indeed, the agree-
ment scores on invalid examples decrease to an average of
35% after regularization. We also notice a significant in-
crease in uncertainty on invalid examples. However, we see
that in some cases, accuracies on the original validation set
drop by over 1%, suggesting a trade-off between accuracy on
valid examples and reliable response on invalid examples.

A well-behaved model should maintain high accuracy on
valid data and also reject invalid inputs. To compare the three
mitigation strategies on an equal footing, we measure accu-
racy on the original validation data and the percentage of
invalid examples correctly identified. Since entropic regular-
ization does not explicitly recognize invalid inputs, we apply
the thresholding strategy to it (Ent + Th).

Table 12 compares the three methods. We see that simple
thresholding (B + Th) does not work well and having the
model learn from invalid examples is beneficial. It appears
that, out of the three methods, training with an extra invalid
label best maintains the balance between accuracy and in-
valid input detection.

We also studied if mitigating one kind of transformation
helps against others. Using (B + Invalid) we train on one
transformation and test on the rest. We found that mitigation
can be transferable. The appendix provides detailed results.

Final Words
The main message of this paper is that today’s state-of-the-
art models for text understanding have difficulties in telling
the difference between valid and invalid text. This observa-
tion is congruent with several other recent lines of work that
highlight the deficiencies of today’s text understanding sys-
tems. For example, Feng et al. (2018) construct irregular ex-
amples by successively removing words without affecting
a neural model’s predictions. Adversarial attacks on NLP
models (e.g. Jin et al. 2020) expose their vulnerabilities; for
example, Wallace et al. (2019) offer an illustrative example
where a model’s prediction can be arbitrarily changed.

Statistical models need not always get well-formed in-
puts. Consequently, when models are deployed, they should
be guarded against invalid inputs, not just in NLP, but also
beyond (e.g., Liang, Li, and Srikant 2018). Krishna et al.
(2020) showed that it is possible to steal BERT-like mod-
els by using their predictions on meaningless inputs. Our
work can be seen as highlighting why this might be possi-
ble: model predictions are largely not affected even if we
destructively transform inputs. Our work shows simple mit-
igation strategies that could become a part of the standard
modeling workflow.



Ethics Statement
Our work points to a major shortcoming of the BERT family
of models: they have a hard time recognizing ill-formed in-
puts. This observation may be used to construct targeted at-
tacks on trained models, especially publicly available ones.
We call for a broader awareness of such vulnerabilities
among NLP practitioners, and recommend that NLP models
should be actively equipped with mitigations against such
attacks.
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More Examples
Table 13 shows more invalid examples generated using our
transformations.

Additional Technical Details and Observations
The following list contains some of the technical details and
observations not mentioned in the paper:

1. For all the lexical overlap transformations, we ensure that
the punctuation at the end of sentence remains at the end.

2. We found that some of the datasets had a formatting prob-
lem. For example, one example in QQP validation set only
had one input. We exclude such examples from our data.

3. We found that for PBSMT models created for NLI task,
agreement scores were much higher for classes: entail-
ment, and contradiction, than neutral class.

Additional Details for Crowd-Sourcing
Experiments

We collected crowd annotations for ascertaining the
(in)validity of examples generated by our transformation
functions. Here, we discuss the instructions we provided to
annotators along with costs. We also briefly describe the
quality control procedure we used.

Crowd Workers. We collected annotations from three
Amazon’s MTurk workers. We used the majority label
among them for our analysis. They were asked to classify
sentence as invalid only if the text is not natural and text is
incomprehensible.

Every worker was paid $0.05 for each Human Intelligence
Task (HIT), and every HIT consisted of 5 examples.

To ensure that annotation quality, in every HIT, we insert
an example which was already annotated (by graduate stu-
dents). We reject all the annotations from a HIT if worker
provides a wrong answer to that example. In all, we only
rejected 3% of the total hits. Because we rejected some an-
notations, the increments are not in 0.33% multiples.

A total of 1800 sentences were annotated in the first hu-
man experiment. This had equal number of valid and in-
valid sentences. This was to ensure that valid and invalid
sentences have equal representation and the estimate we get
from crowd sourced experiment is un-biased.

Human response to classification on invalid
examples
For ascertaining the validity of generated examples from our
transformations, first we performed a crowd-sourcing exper-
iment where humans were asked to rate sentences as valid or
invalid. We describe an additional set of experiments where
humans are asked to perform classification on invalid exam-
ples, a setting identical to the one our models work with. We
perform this experiment to understand the contrast between
humans and models w.r.t their response when presented with
invalid examples.

Specifically, for every transformation we study, we sam-
ple 50 invalid examples generated (450 total) and ask turk-
ers to perform classification task on these examples. Addi-
tionally, we have 50 clean examples to measure their per-
formance on valid examples. For every example, we collect
annotations from three annotators and use the majority la-
bel for our analyses. Since, invalid examples are expected to



Dataset Transform Input Prediction

Natural
Language
Inference -

MNLI

P: I feel that you probably underestimate the danger, and therefore warn
you again that I can promise you no protection.

Original H: I warn you again, that I can promise you no protection, as I feel that you
probably underestimate the danger.

Ent (99.65%)

Sorted H′: , , again as can danger feel i i i no probably promise protection that that
the underestimate warn you you you .

Ent (98.38%)

P: However, the specific approaches to executing those principles tended to
differ among the various sectors.

Original H: Specific approaches to each principle is the same in each sector. Con (99.96%)
Reversed H′: sector each in same the is principle each to approaches specific . Con (99.94%)

P: Nash showed up for an MIT New Year’s Eve party clad only in a diaper.

Original H: Nash had too many nasty pictures on Instagram. Neu (99.84%)
Repeat H′: too had had too many many inst inst.. Neu (99.84%)

P: The number of steps built down into the interior means that it is unsuit-
able for the infirm or those with heart problems.

Original H: The interior is well suited for those with cardiac issues. Con (99.43 %)
PBSMT-C H′: there was no way to the is unsuitable for the park and infirm . Con (99.71 %)

Paraphrase
Detection -

QQP

Q1: How long can I keep a BigMac in my fridge before eating it?

Original Q2: How long do refried beans last in the fridge after you open the can? No (99.98 %)
Repeat Q2′: how longDonald cluesried beans International in the fridge111 dessert

open the Mass squ
No (99.97 %)

Q1: How do I post a question in quora?

Original Q2: How can I ask my question on Quora? Yes (99.97 %)
CopyOne Q2′: ora Yes (99.98 %)

Q1: What is the best programming language to learn first and why?

Original Q2: What programming language is best (easiest) to learn first? Yes (99.43 %)
Shuffle Q2′: ( first programming best language learn is easiest what ? ) to Yes (99.41 %)

Sentiment
Analysis -

SST-2

Original Directed in a paint-by-numbers manner . –ve (99.95 %)

Repeat directed in a a-by-n in inby –ve (98.45 %)

Original old-form moviemaking at its best . +ve (99.98 %)

Replace CBS scare 1966 moviem GS at¡200b¿ NZ add +ve (99.98 %)

Table 13: More Examples for invalid examples generated using destructive transformations that render the inputs meaningless. A
fine-tuned RoBERTa model makes the same predictions with very high probability (in parenthesis). PBSMT-C uses a generation
model to learn statistical correlations for class Contradict. For NLI, the model chooses between entail (Ent), contradict (Con),
and neutral (Neu). For sentiment analysis, possible labels are –ve or +ve. For paraphrase detection, model answers if the two
texts are paraphrases of each other (Yes or No). Notice that in some of the examples, tokens are just the sub-words from the
RoBERTa tokenizer.

be incomprehensible, we provide an additional instruction
to the turkers to perform the task by ”reconstructing the in-
puts to the best of their abilities”. Rest of the instructions
are taken from the original task instructions.

We perform this analyses on two tasks: NLI (MNLI), and
Sentiment Analysis (SST2). We use NLI as a task represen-
tative of tasks that require a pair of inputs, and use SST2
as representative of tasks that require only one input. In the
main paper, we have only presented these results for MNLI

due to space constraints. Here we describe results on both
tasks.

Results of crowd-sourced experiments are presented in ta-
ble 14. We note that accuracy for humans on invalid ex-
amples is much lower than their accuracy on valid (un-
transformed) examples. This shows that our proposed trans-
formations in fact, do destroy the label determining infor-
mation in the inputs. On invalid examples, for MNLI the hu-
mans perform with 35% accuracy, while on SST2 the accu-



Dataset Valid Invalid

MNLI 77% 35%
SST-2 83% 49%

Table 14: Human Accuracy for Valid and Invalid examples
on two datasets. Invalid examples are generated from our
proposed transformations, while valid examples come from
the original validation sets.

racy is around 49%. Both of these numbers are near-random:
33% for MNLI, 50% for SST2.

Additional Experimental Results
RoBERTa is highly confident: Detailed results
In results section of the main paper, we show that fine-tuned
RoBERTa model achieves a high agreement score with high
confidence on invalid examples generated using our pro-
posed transformations. We provided average confidence val-
ues for the model on each dataset. Here we provide detailed
results for all datasets on all transformations. These results
are shown in table 15.

Transform MNLI SNLI QQP MRPC SST2
Random 33.33 33.33 50.00 50.00 50.00

Sort 94.86 93.17 98.76 98.19 99.33
Reverse 94.15 89.15 98.85 97.65 99.25
Shuffle 94.94 92.53 98.77 97.67 99.17
CopySort 97.96 92.48 98.16 99.55 -

Avg. Lex. 94.48 91.83 98.63 98.27 99.25

Replace 94.81 93.35 99.56 97.62 99.21
Repeat 90.46 91.29 99.31 94.07 99.26
Drop 94.01 93.96 99.20 97.31 99.32
CopyOne 94.94 92.69 99.86 99.76 –

Avg. Grad. 93.55 92.82 99.49 97.19 99.26

PBSMT 95.05 93.52 96.56 - 98.39

Table 15: Average Confidence over predictions from trans-
formed validation set . The closer the numbers are to ran-
dom, better the model. Cells marked ‘–’ indicate that the
transformation is not defined for that dataset.

Because MRPC has less than 4000 training examples, we
could not generate PBSMT based invalid samples.

Comparing models from the BERT-family
We now provide detailed results for four models from the
BERT-family on MNLI. We aim to compare these models
for their response on invalid inputs generated using our pro-
posed transformation functions. Agreement scores are pro-
vided in table 16. Confidence scores are provided in table 17

Mitigation results
To augment the training data with invalid examples, we sam-
ple 50% examples from training set and for each of them,
generate all nine types of invalid examples as described in
section on Destructive Transformations. These examples are
then augmented to the original training set to get our final
augmented training set. We initialize the model with the fine-
tuned weights from the baseline model and then train it fur-
ther for three more epochs with the loss function of eq. (1).

After applying entropic regularization, we observe a sig-
nificant drop in model’s agreement scores on invalid exam-
ples (refer fig. 2). Indeed, the agreement scores on invalid
examples have decreased to an average of 35% after regu-
larization. Moreover, owing to the regularization, we notice
a significant increase in uncertainty on nonsensical exam-
ples. However, we also notice that in some cases accuracies
on original validation set decrease by more than 1% . For in-
stance, for MNLI, accuracy decreased from 87.31 to 86.11.
Clearly there is some trade-off between accuracy on clean
examples and reliable response on invalid examples.
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Figure 2: Results after applying entropic regularization. We
found that not only did the agreement scores come down to
an average of 35%, average confidence also decreased sig-
nificantly. Gray line in the figure indicates agreement scores
for random predictions.

Training Details
We will release the code to reproduce all over experiments
after acceptance.

Mitigation Strategies
We used three mitigation strategies in our paper: Thresh-
olding original model probabilities (B + Th), Thresholding
Entropic Regularized Model’s probabilities (Ent + Th), and



Transformation BERT-base BERT-large RoBERTa-base RoBERTa-large
Sort 76.97 78.54 79.19 81.20
Reverse 74.32 74.19 76.91 75.54
Shuffle 76.94 78.22 79.35 81.93
CopySort 81.49 88.86 90.48 90.48

Avg. Lexical 80.48 79.95 82.35 82.29

Replace 56.50 59.82 63.01 64.19
Repeat 45.23 49.22 49.71 49.98
Drop 61.80 64.10 69.43 71.45
CopyOne 74.58 71.22 80.41 89.75

Avg. Gradient 59.37 61.09 65.63 68.84

PBSMT 56.15 57.37 57.02 57.16

Random 33.33 33.33 33.33 33.33

Table 16: Results comparing average agreement among model sizes. Closer the numbers are to random, better is the model.‘–‘
means the transformation is not defined for that dataset.

Transformation BERT-base BERT-large RoBERTa-base RoBERTa-large
Sort 94.26 94.88 94.86 94.87
Reverse 93.45 93.8 94.15 94.39
Shuffle 94.31 94.97 94.94 94.03
CopySort 94.31 94.36 97.96 96.56

Avg. Lexical 94.08 94.50 95.48 94.96
Replace 89.66 91.34 94.81 94.68
Repeat 92.65 78.97 90.46 92.99
Drop 79.19 93.39 94.01 94.71
CopyOne 98.49 98.63 94.94 91.45

Avg. Gradient 89.99 90.58 93.55 93.46
PBSMT 94.59 95.15 95.05 95.11

Table 17: Results comparing confidence scores among model sizes. Closer the numbers are to random, better is the model.‘–‘
means the transformation is not defined for that dataset.

training with an extra invalid class (IC). Both (Ent + Th)
and IC need invalid examples at training time. For these two
methods, we augmented the training data with invalid ex-
amples generated by applying all nine types of destructive
transformations to randomly selected set of 50% examples
from training set. These examples are then combined with
the original training set to get our final training set. We ini-
tialize the model with the fine-tuned weights from the base-
line model and then train it further for two more epochs.

Since all our experiments are on validation datasets, we
cannot use those for searching hyperparameters. To find best
hyperparameters, we sample 10 % examples from training
set and use this set for validation. After finding best hyper-
parameters, the models are trained on full training sets.

Finding best thresholds We used two metrics for compar-
ing the three mitigation strategies – (1) Accuracy on orig-
inal validation set (Acc.), (2) Percentage of invalid exam-
ples identified correctly (%Invalid). For second metric, we
create a set consisting of equal number of invalid examples

generated by each transformation. As noted in the section
on mitigation strategies in our main paper, there is a trade-
off between Acc. and %Invalid. This is because these mod-
els might incorrectly classify examples from original (clean)
validation set as invalid. For thresholding both baseline and
entropic model, we have to find a balance between the two
metrics, which leads to decrease in accuracy on original val-
idation set.

We follow a simple procedure to find these thresholds us-
ing the validation set sampled from training set. We perform
a grid search in range [ 1N , 1.0] with step size of 0.001, where
N is the number of classes for the task. After this, we select
all the thresholds that provide accuracy on (clean) validation
set within a certain tolerance value (3%) of the original accu-
racy. Out of all these thresholds, the threshold that provides
best % Invalid is selected. For example, if accuracy of the
Entropic model on MNLI is 87.31, we calculate two met-
rics for all thresholds between [ 13 , 1.0]. We then select all
thresholds for which clean accuracy is within 3% of 87.31



(–84.31). From these values, the threshold that provides best
detection of invalid examples is selected for analysis.

Regularization Parameter for Entropic Regularization
Entropic regularization introduces a new parameter λ that
provides a trade-off between regularization and original
cross entropy loss (refer section on Entropic Regularization
in main paper). We found that large values of λ tend to
decrease accuracy on original validation set. We fix λ =
0.1 for all our experiments. We did try other values in
{0.01, 0.1, 0.3, 0.5, 1.0, 5.0}.

Training a PBSMT Model As described in main paper,
we train separate sequence generation models for each la-
bel. We found the examples to be non-grammatical as well
as completely out of context. With default PBSMT parame-
ters, the model mostly duplicated inputs at its outputs, while
adjusting distortion coefficient and language model coeffi-
cient achieved our desirable results.

Issues with training on Gradient based Transformations
When mitigating with invalid examples generated using gra-
dient based methods, we noticed that sometimes if the num-
ber of gradient based invalid examples were large, the model
would stop learning and start predicting the same class for
every example. To overcome this behavior, simply using less
number of gradient based examples worked. For mitigation,
we tried using 50%, or 40%, or 30% of training examples to
add to the augmented training set.

Transferability of Mitigation Strategies
We study if mitigation against one transformation helps
against others using the strategy of training with the in-
valid label. We train models with invalid examples of one
transformation and evaluate on invalid examples of all other
transformations. The results in fig. 3 suggest that mitigation
against transformations within a class type are transferable.
For instance, training with any of the Sort, Shuffle,
Reverse mitigates other transformations from the same
group. However, to mitigate Drop and PBSMT, we need to
train on invalid examples of these types. Table 18 shows all
of the results.

Comparison of different models
On page 6 ( table 10), we presented results of using models
with different pre-training tasks and inductive biases. De-
tailed results are presented here in table 19. These results
show that irrespective of the pre-training tasks and induc-
tive biases, neural models perform very similarly. Particu-
larly surprising result is that for models with recurrent in-
ductive bias (XLNet, ESIM-*) which are trained with ex-
plicit word order based inductive bias: agreement scores are
high even for lexical transformations which destroy exam-
ples by changing the word order of the inputs in irregular
ways.
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Figure 3: Transferability across transformation functions.
We notice a great deal of transferability across lexical over-
lap transformations.

Reproducibility
In this section, we provide details on our hyperparameter
settings along with some comments on reproducibility.

Models Used As described in main paper, we performed
our experiments by fine-tuning RoBERTa-base model (Liu
et al. 2019). For our implementation, we used Huggingface’s
transformers repository (Wolf et al. 2020). We also used
RoBERTa-large, BERT-base, BERT-large from this repos-
itory to compare different models from BERT family.

Hyperparameter Tuning for Calibration Methods We
used three methods for improving calibration of our model
– Label Smoothing (LS), Focal Loss (FL), and Tempera-
ture Scaling (TS). Each of these methods introduce a single
new hyperparameter. For Label Smoothing, this parameter
(λLS) controls the smoothing of hard labels. Focal loss adds
a focusing parameter γFL (Lin et al. 2017). For temperature
scaling, we have an additional parameter TTS that controls
the amount of scaling to be applied to softmax logits (Guo
et al. 2017).

Since all our experiments are on validation datasets, we
cannot use those for searching hyperparameters. To find best
hyperparameters, we sample 10 % examples from original
training set and use this set for validation. After finding
best hyperparameters, the models are trained on original, full
training sets.

To find λLS for MNLI, we used grid search over [0.1, 0.3]
with 0.05 as step size, our best hyperparameter was λLS =
0.1. As LS needs to train a model from scratch for each value
of λLS , to avoid excessive computation we used this same
value across all datasets. For γFL, as suggested by Lin et al.,



Sort Reverse Shuffle CopySort Replace Repeat Drop CopyOne PBSMT

Sort 99.66 99.82 99.43 99.39 41.45 77.19 29.33 89.2 49.25
Reverse 99.03 99.86 98.64 97.8 32.66 74.62 17.86 87.12 45.79
Shuffle 99.64 99.85 99.62 98.81 49.45 81.02 32.87 83.53 52.25
CopySort 75.27 77.66 67.81 99.97 1.01 10.28 0.68 29.92 0.05
Replace 50.21 87.13 49.22 3.69 99.11 45.29 19.26 36.25 65.22
Repeat 80.97 96.93 78.88 98.61 22.05 99.93 33 99.47 58.25
Drop 90.61 95.22 94.42 97.74 82.9 98.73 94.81 97.62 42.02
CopyOne 55.26 80.15 50.14 11.45 45.47 55.77 15.93 99.83 12.68
PBSMT 25.45 41.25 21.26 36.5 76.56 65.2 58.56 79.25 98.64

Table 18: Results on transfer effects of each transformation function. The labels on the left indicate the function that the model
was trained on, labels on the top show the functions it was tested on. All numbers denote percentage of invalid examples
detected. We note that the functions have a strong in-class transfer effect.

Class Pretraining Model Lexical Gradient PBSMT Average
Auto-Encoding W-MLM + NSP BERT-B (Devlin et al. 2019) 80.48 57.01 55.02 67.13

BERT-L 80.95 59.92 58.01 69.05
W-MLM RoBERTa-B (Liu et al. 2019) 82.35 65.63 57.02 71.72

RoBERTa-L 82.90 68.17 57.42 73.52
W-MLM + SOP ALBERT-B (Lan et al. 2019) 78.55 57.05 56.73 66.57

Auto-Encoding S-MLM + NSP SpanBERT-B (Joshi et al. 2020) 81.03 57.11 55.4 67.55
S/W-MLM + SS BART-B (Lewis et al. 2020) 78.68 64.81 56.49 70.04
RTD ELECTRA-B (Clark et al. 2019) 79.36 60.95 58.11 68.81

Auto-Regressive P-LM XLNet-B (Yang et al. 2019) 81.33 62.13 57.42 70.14
LM ESIM- ELMo (Peters et al. 2018) 76.49 78.15 63.17 75.78
- ESIM- Glove (Chen et al. 2017) 74.19 75.31 63.41 73.49

Table 19: Agreement score of different models on MNLI. B refers to the base variant, L refers to the large one. Last four
columns present agreement scores for 3 kinds of transformations discussed in this work, with last column being the average.
W-MLM refers to word based Masked Language Modeling (MLM), S-MLM refers to span based MLM, NSP refers to Next
Sentence Prediction, SOP refers to Sentence Order Prediction, SS refers to sentence shuffling objective, RTD refers to Replaced
Token Detection. P-LM refers to permutation language modeling, LM refers to traditional auto-regressive language modeling
pre-training objective used in ELMo.

Dataset and Model Average RunTime

MNLI + Invalid 14 hr
SNLI + Invalid 18 hr
MRPC + Invalid 13 mins
QQP + Invalid 11 hr
SST-2 + Invalid 1.5 hr

Table 20: Average Training time with an additional invalid
class

we use grid search over [0, 5.0] with step size 0.5 and find
that γFL = 2.0 works best. Again to avoid excessive compu-
tation, we fix this value for all datasets. For TTS , we maxi-
mize the log-likelihood of validation set (described above)
using LBFGS optimizer as recommended by Guo et al..
Value for TTS was 3.21. We found that while LS, FL im-
prove calibration for all datasets, temperature scaling made
calibration worse for SST-2 (0.05→ 0.24).

Computing Infrastructure Used Most of our experi-
ments (except on PBSMT) required access to GPU acceler-
ators. We primarily ran our experiments on three machines:
Nvidia Tesla V100 (16 GB VRAM) , Tesla P100 (16 GB
VRAM), and Nvidia TITAN X (Pascal) (12 GB VRAM).

We used the Moses SMT system for our PBSMT mod-
els (Koehn et al. 2007; Koehn, Och, and Marcu 2003). These
required intensive CPU computations and were executed on
a machine with an Intel(R) Xeon(R) 2.40GHz CPU with 28
cores. To speed up computation, we used 48 parallel threads.

Average Run times We fine-tune all our models for three
epochs with a batch size of 8 (discussed in next section).
Average training times are presented in table 20.

Fine-tuning Details We used the RoBERTa-base model
for most of our experiments. This model has 12 layers each
with hiddem size of 768 and number of attention heads equal
to 12. Total number of parameters in this model is 125 mil-
lion.



We also experimented with BERT-base, BERT-large, and
RoBERTa-large for comparison, which have 110 million,
340 million, and 355 million parameters respectively. For
both BERT models, we used the uncased variant.


