Non-affine Extensions to Polyhedral Code Generation

Anand Venkat, Manu Shantharam, Mary Hall and Michelle Strout

2014 International Symposium on Code Generation and Optimization (CGO)
Polyhedral Transformations &
Code Generation

Stage 1:
Loop Bounds
Extraction & Iteration
Space Construction

Input Code:
for(i=0; i < n; i++)
s0: a[i]=b[i];

Iteration Space (IS):
s0 = {[i] : 0 <= i <= n}

Stage 2:
Transformation (T)
Application (Eg. Loop
shifting)

Input IS:
{[i] : 0 <= i <= n}

T = {[i]->[i+4]}

Output IS:
{[i] : 4 <= i < n + 4}

Stage 3:
Original Loop Iterators
obtained as functions of
new iterators

Update statement
macro with T_inv. Apply
Polyhedra Scanning

T_inv = {[i]->[i-4]}

Output Code:
for(i=4; i < n+4; i++)
s0: a[i-4]=b[i-4];
Motivation

• Limitation of the Polyhedral Model
 • Loop bounds, array access expressions and transformations must be affine, i.e. of the form: \(a_0 + a_1 x_1 + a_2 x_2 + \ldots + a_n x_n \)

• Important non-affine construct:
 Indirection through index arrays such as \(B[i] \) in \(A[B[i]] \)
 • Common in sparse matrix and molecular dynamics computations
 • Compiler cannot determine memory access patterns statically

• Key observations:
 Non-affine iteration spaces/accesses can sometimes be tolerated
 Run-time inspection reveals mapping of iterations to array indices
 • Enables locality and parallelizing run-time transformations
Sparse Matrix-Vector Multiply (SpMV)

- Sparse matrix computations
 - Avoid redundant computation and space for zero-valued elements
 - Results in non-affine index arrays to derive column and row
 - SpMV libraries support multiple matrix formats and parallelization strategies to exploit matrix structure (e.g., CUSP for GPUs)

```plaintext
for (i=0; i < n; i++)
  for (j=index[i]; j<index[i+1]; j++)
    y[i]+=a[j]*x[col[j]];
```
Related Work

Run-time Approaches for Sparse Matrix Vector Multiply (SpMV)

- Basumallik and Eigenmann (PPoPP’06)
 - Use a loop restructuring run-time transformation on irregular loops

- Ravishankar et al. (SC’12)
 - Generate run-time I/E code for partitioning irregular loops on a distributed memory system

Non-affine Polyhedral Abstractions

- Pugh and Wonnacott (TOPLAS’98)
 - Represent non-affine accesses for array dependence analysis

- Strout et al. (LCPC’12)
 - Represent run-time Inspector/Executor (I/E) transformations as non-affine transformations
Contributions

1. Represent iteration spaces for non-affine loop bounds
 • Enables further iteration space transformations

2. Support non-affine transformations using run-time inspection

3. Simplify array access expressions resulting from non-affine mappings

4. Demonstrate high-performance compiler-generated code on GPU
 • Performance of Sparse Matrix Vector Multiply (SpMV) kernel comparable to manually-tuned CUSP library
Non-affine Loop Bounds

Loop Bounds
Extraction & Iteration
Space Construction

a) Without Extension

SpMV Code:
for(i=0; i < n; i++)
s0: for(j=index[i]; j<index[i+1]; j++)
y[i]+=a[j]*x[col[j]]

b) With Extension

SpMV Code:
for(i=0; i < n; i++)
for(j=index[i]; j<index[i+1]; j++)
s0: y[i]+=a[j]*x[col[j]]

Inner j-loop bounds abstracted as index(i) & index(i+1)

Iteration Space (IS):
{[i,j] : 0 <= i < n && index(i) <= j && j < index(i+1)}
Non-affine Loop Bounds

• Un-interpreted Function Symbols
 • “Un-interpreted” as exact function mapping is not known

• Use to represent non-affine loop bounds in the iteration space
 • Enables other iteration space transformations (e.g., tiling)

```c
for(i=0; i < n;i++)
  for(j=index[i];j<index[i+1];j++)
y[i]+=a[j]*x[col[j]]
```

```c
for (i = 0; i <= n; i ++)
  for (jj = index[i];jj<index[i+1];jj+=4)
    for (j = jj; j <min(index[i+1],jj + 4); j += 1)
      y[i] += (a[j] * x[col[j]])
```
Non-affine Transformations

- Generalized loop coalescing transformation
 - Flatten a multi-dimensional loop nest into a single loop

\[
T_{\text{coalesce}} = \{[i,j] \rightarrow [k] \mid k = c(i,j) \land 0 \leq k < \text{NNZ}\}
\]

- Benefit
 - Enables other transformations (e.g., longer vectors, more tiling)
Non-affine Transformations

• Mapping from input loop iterators to output loop iterator determined at run-time

• An Inspector records this mapping
 • Code with updated references is termed the Executor

• Code Generation utilizes the run-time map constructed for the un-interpreted function to “fill-in” the inverse mapping
 • Eg. i = c_inv[k][0] & j = c_inv[k][1]

Inspector Data Structure:

```c
struct access_relation {
    // array to track old iterators
    int c_inv[][2];
    // variable to keep track of k
    int k;
    void create_mapping(int i, int j) {
        c_inv[k][0] = i;
        c_inv[k][1] = j;
        k++;
    }
};
```

Inspector Code:

```c
struct access_relation c;
for (i=0; i<=n-1; i++)
    for (j=index[i]; j<=index[i+1]-1; j++)
        c.create_mapping(i, j);
```

Executor Code:

```c
for (k = 0; k < NNZ; k++)
y[c_inv[k][0]]
    += A[c_inv[k][1]]*x[col[c_inv[k][1]]];
```
Non-affine Transformations

Input Loop:
for(i=0; i < n;i++)
 for(j=index[i];j<index[i+1];j++)
 y[i]+=a[j]*x[col[j]]

Copy Input Loop IS to Inspector's IS

Inspector Code:
for(i=0; i < n;i++)
 for(j=index[i];j<index[i+1];j++)
 c.create_mapping(i,j);

Copy Input Loop statement code to executor

Set Coalesced Loop as Executor’s IS

Executor Code:
for (k = 0; k < NNZ; k++)
 y[c_inv[k][0]] += A[c_inv[k][1]]*x[col[c_inv[k][1]]];
Optimizations

• Un-simplified Output Loop:

 \[
 \text{for } (k = 0; k < \text{NNZ}; k++) \\
 \]

 \[
 y[c_{\text{inv}}[k][0]] += A[c_{\text{inv}}[k][1]]*x[col[c_{\text{inv}}[k][1]]];
 \]

• Array access Indirection incurs extra memory load instruction overheads

• Inspector provides additional information that iterator \(j \) in input loop is equal to iterator \(k \) in output loop

 \[
 T_{\text{coalesce}} = \{[i,j] \rightarrow [k] \mid k = c(i,j) \land 0 \leq k < \text{NNZ} \} \land j=k
 \]

• Inverse mapping simplification results in optimized Output Loop:

 \[
 \text{for } (k = 0; k < \text{NNZ}; k++) \\
 \]

 \[
 y[c_{\text{inv}}[k][0]] += A[k]*x[col[k]];
 \]
GPU Optimization Strategies

- GPUs are massively multithreaded
 - Compiler should expose as many parallel computations as possible

- Optimize for memory coalescing => Adjacent threads accessing contiguous memory locations increase effective memory bandwidth

- Compiler interfaces transformed code with architecture-specific reduction library routines
 - Tiling transformations allow controlling the granularity of the reduction

- Parallel reductions desired as they
 - Increase degree of parallelism
 - Improve memory coalescing
Case Study: SpMV

- Highly optimized parallel derivations for the SpMV kernel targeting GPUs
- Parallelization Strategies as in Bell and Garland (SC’09)

CSR-Scalar

- Row 0: Val0
- Row 1: Val1 Val2 Val3 Val4
- Row 2: Val5 Val6
- Row 3: Val7 Val8 Val9

CSR-Vector

- Row 0: Val0
- Row 1: Val1 Val2 Val3 Val4
- Row 2: Val5 Val6
- Row 3: Val7 Val8 Val9

COO

- Threads 0-3
- Threads 4-7
- Threads 8-11
SpMV CSR Scalar

Tile i-loop

SpMV Code:
for(i=0; i < n; i++)
 for(j=index[i]; j<index[i+1]; j++)
 s0: y[i]+=a[j]*x[col[j]]

CUDA block and thread dimensions

SpMV Code:
for(ii=0; ii < n; ii+=Ti)
 for(i=ii; i < ii+Ti; i++)
 for(j=index[i]; j<index[i+1]; j++)
 s0: y[i]+=a[j]*x[col[j]]

a. CSR Scalar Script

tile_by_index(0, {“i”},{Ti}, {l1_control=“ii”}, {“ii”, “i”,”j”})

cudaize(0,”spmv_GPU, {a=NNZ, x=N, y=N, col=NNZ, index=NNZ}, {block={“ii”}, thread={“i”}},{})

b. CSR Scalar Code

__global__ void spmv_GPU (float *y, float *a, float *x, int *col, int *index){

 if(tx <= NROWS –Ti*bx – 1)
 for(j=index(Ti*bx + tx);
 j <= index__(Ti*bx + tx) – 1; j+=1)
 y[Ti*bx + tx]+=(a[j]*x[col[j]]);
}

16
SpMV CSR Vector

- Tiling for parallel row computations
- Second tiling for intra warp parallelization within row

c. CSR Vector Script

```c
    tile_by_index(0,{"i"},{Ti}, {l1_control="ii"},{"ii","i","j"})CU=1
    tile_by_index(0,{"j"},{Tj},{l1_control="jj",l1_tile="j"}, {"ii","i","j",
    "jj"},strided)CU=1
    scalar_expand_by_index(0,{"i","j"},"RHS", CP_TO_SHARED, 
                       NO_PAD,ACCUMULATE_THEN_ASSIGN)
    cudaize(0,"spmv_GPU",{ a=NNZ,x=N,y=N, col=NNZ,index=NNZ}, 
             {block={"ii"}, thread={"j", "i"}}),
    reduce_by_index(0,"jj", "reduce_warp",{}, {"tx"})
```

d. CSR Vector Code

```c
#define index_(i) index[i]
#define index__(i) index[i + 1]

__global__ void spmv_GPU(float *y,float *a,float *x,int *col,int *index) { ... 
__device__ __shared__ float _P1[TILESZ*WARP_SZ];
if (ty <= NROWS - TILESZ* bx - 1) { 
    if (tx <= index__(ty + TILESZ* bx) - index_(ty + TILESZ* bx) - 1) 
        _P1[tx + ty * WARP_SZ] = 0;
    if (tx <= index__(ty + TILESZ* bx) - index_(ty + TILESZ* bx) - 1){
        for (jj = index_(ty + TILESZ* bx); jj <= -tx + index__(ty + 
TILESZ* bx) - 1; jj += WARPSZ)
            _P1[tx + ty * WARP_SZ] += (a[tx + jj] * x[col[tx + jj]])/
        reduce_warp(&y[ty + TILESZ* bx],&_P1[tx + ty * WARP_SZ],
              _lt(31,index__(ty + TILESZ* bx) - index_(ty + TILESZ* bx) - 1));
    }
}
```
for (i=0; i < n; i++)
 for (j=index[i]; j<index[i+1]; j++){
 $T[j] = a[j] \times x[col[j]]$;
 $y[i] += T[j]$
 }

Product Expression is scalar expanded

Threads:

Shared Memory Reduction
SpMV COO

• Input loop is coalesced and then tiled
 • Each block consists of multiple warps
 • Each warp reduces a partition of non-zeros
 • Rows may span across warp boundaries

• Non-zeros on warp boundaries defer write to global memory to avoid data races
 • Peeling and distribution utilized to separate the update across boundaries from interior points
 • Second level reduction accounts for boundary updates
Experiments

- Experiments conducted on Nvidia Tesla C2050 Fermi
 - 14 Streaming Multiprocessors, 32 cores per SM.
 - 1 GB of global memory, 64KB register file per SM.
 - We compare performance of generated code to the corresponding CUSP implementation

- Matrices chosen were from the UFL Sparse Matrix Collection
Methodology

- CSR Scalar
 - Each CUDA thread processes 1 row
 - Auto-tuned for different configurations of threads per block

- CSR Vector
 - 2-dimensional blocks
 - 1st dimension for threads per block
 - 2nd dimension for No. of non-zeros within a row being reduced
 - 2nd dimension tuned based on input matrix row length

- COO
 - Optimizations
 - Indirection elimination
 - Padding to eliminate control flow
Results

CSR Scalar

![CSR Scalar Speedup](image)

CSR Vector

![CSR Vector Speedup](image)
Results

COO

Speedup compared to CUSP

- No indirection and padded
- Indirection and padded
- Base

Average speedup over CUSP:
- No indirection and padded: 1.15X
- Indirection and padded: 1.0X
- Base: 0.9X

- In this paper, we have developed and demonstrated extensions to improving memory bandwidth and reducing control flow, as discussed in Section 4 further improves the overall performance by an additional 10% on average as indicated by the performance plots.

- Comparing COO results to different optimizations for COO related computations was restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.

- Improvements over CUSP implementation show slightly lower performance than CUSP result from better choices in thread decomposition. Tuned CUSP, referring to Section 4, targets GPUs. Improvements over comparable and sometimes exceeds that of the manually-tuned CUSP.

- The COO code achieves 92% of the corresponding compiler-generated version. The first optimization, “Indirection and padded”, eliminates IF conditions that check if the access is within bounds by padding the data structure and padded, bar. With these optimizations represent the modest cost of abstraction; i.e., using a reduction implementation has in our implementation the reduction implementation has in the systematic compiler-based derivation. That is, a small performance loss results from the non-application of applying different optimizations for COO related computations were restricted to index arrays in loop bounds and subscripts. We demonstrated the robustness of this approach in applying compiler-generated SpMV, the resulting performance is comparable and sometimes exceeds that of the manually-tuned CUSP library, targeting GPUs.
Discussion

• Average Performance Improvement of 1.14x over CUSP for CSR Scalar and Vector
 • Auto-tuning to pick optimal block size
 • Significant performance improvement for matrices with exceptionally small row lengths
 • CUSP uses a fixed block size of 256 for CSR Scalar

• COO performs within 8% of CUSP version
 • Performance was traded off for a systematic compiler based reduction implementation derivation
Summary

• Non-affine Extensions
 • Support for representing non-affine bounds in iteration space
 • Generalized Loop Coalescing as non-affine transformation

• Updated Code Generation
 • Extended statement macro interface for non-affine mappings
 • Simplify multiple indirections in array accesses

• Compiler Transformation recipes for high performing SpMV variants on GPU

• Compiler-generated code that performs comparably with manually tuned library, CUSP
Questions?