Streaming for large scale NLP: Language Modeling

Amit Goyal, Hal Daumé III and Suresh Venkatasubramanian
School of Computing
University of Utah

e-mail: {amitg, hal, suresh}@cs.utah.edu
web: http://www.cs.utah.edu/~amitg/

NAACL HLT 2009
3rd June 2009
Overview

Problem

- Large amounts of data in many NLP problems
- Many such problems require relative frequency estimation
- Computationally expensive on huge corpora
Overview

Problem
- Large amounts of data in many NLP problems
- Many such problems require relative frequency estimation
- Computationally expensive on huge corpora

Canonical Task
- Language Modeling: large-scale frequency estimation

Proposed Solution
- Trades off memory usage with accuracy of counts using Streaming
- Employs small memory-footprint to approximate n-gram counts
Overview

Problem
- Large amounts of data in many NLP problems
- Many such problems require relative frequency estimation
- Computationally expensive on huge corpora

Canonical Task
- Language Modeling: large-scale frequency estimation

Proposed Solution
- Trades off memory usage with accuracy of counts using Streaming
- Employs small memory-footprint to approximate n-gram counts

Findings
- Scales to billion-word corpora using conventional 8 GB machine
- SMT experiments show that these counts are effective
Goal: Building higher order language models (LMs) on huge data sets

Difficulties:
- Increase in n \implies Increase in number of unique n-grams
- Increase in memory usage

Example

- 1500 machines got used for a day to compute 300 million unique n-grams from tera bytes of web data [Brants et al. (2007)]
Related Work

- Prefix trees to store LM probabilities efficiently
 [Federico and Bertoldi, SMT workshop at ACL 2006]

- Bloom and Bloomier filters: Compressed n-gram representation
 [Talbot and Osborne; ACL 2007] [Talbot and Brants; 2008]

- Distributed word clustering for class-based LMs
 [Uszkoreit and Brants; ACL 2008]
Zipf’s law Phenomena

- Number of unique n-grams is large
- Low frequency count n-grams contribute most towards LM size
Zipf’s law Phenomena

- Number of unique n-grams is large
- Low frequency count n-grams contribute most towards LM size

![Graph showing Zipf's law phenomena](image)

Key Idea: Throw away rare n-grams
Count pruning

- Discards all \(n \)-grams whose count < pre-defined threshold

Entropy pruning

- Discards \(n \)-grams that change perplexity by less than a threshold

SMT experiments with 5-gram LM on large data:

<table>
<thead>
<tr>
<th>Model Size</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>28.7</td>
</tr>
<tr>
<td>1.1m</td>
<td>28.0</td>
</tr>
<tr>
<td>28.5m</td>
<td>28.1</td>
</tr>
</tbody>
</table>

Pruning method loses 0.7 BLEU points compared to exact model. Decrease = 300 times smaller model.
Count pruning
- Discards all n-grams whose count $< \text{pre-defined threshold}$

Entropy pruning
- Discards n-grams that change perplexity by less than a threshold

SMT experiments with 5-gram LM on large data:

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>367.6m</td>
<td>28.7</td>
</tr>
<tr>
<td>100 count cutoff</td>
<td>1.1m</td>
<td>28.0</td>
</tr>
<tr>
<td>5e-7 ϵ entropy</td>
<td>28.5m</td>
<td>28.1</td>
</tr>
</tbody>
</table>

- Pruning method loses 0.7 BLEU points compared to exact model
- Decrease \Rightarrow 300 times smaller model
Difficulties with scaling pruning methods for large-scale LM:

- Computation time and memory usage to compute all counts is tremendous
- Requires enormous initial disk storage for n-grams
Assume that multiple-GB models are infeasible

Goal: Directly estimate a small model instead of first estimate a large model and then compress it

Employ deterministic streaming algorithm [Manku and Motwani, 2002]
Given: Stream of n-grams of length N.
Running Example: $n=5$ and $N=10^6$

- Algorithm can only read from left to right without going backwards
- Store only parts of input or other intermediate values
- Typical working storage space size $O(\log^k N)$
Step 1: Divide the stream into windows using $\epsilon \in (0, 1)$
Window size = $\frac{1}{\epsilon}$; Total ϵN windows
Running Example: Set $\epsilon = 0.001; N = 10^6$
Window size = 10^3; Total 10^3 windows
At window boundary, decrement all counters by 1
At window boundary, all counters are decremented by 1
Algorithm continued

At window boundary, decrement all counters by 1
At window boundary, all counters are decremented by 1
Algorithm Guarantees

$s \in (0, 1)$ is support. In practice, $s = 10 \epsilon$

Running Example: $\epsilon = 0.001$, $s = 0.01$
Algorithm Guarantees

$s \in (0, 1)$ is support. In practice, $s = 10\epsilon$

Running Example: $\epsilon = 0.001$, $s = 0.01$

- All n-grams with actual counts $> sN (10^4)$ are output
- Returns no n-grams with actual counts $< (s\epsilon)N (9000)$
- All reported counts \leq actual counts by at most $\epsilon N (1000)$
- Space used by the algorithm: $O\left(\frac{1}{\epsilon} \log(\epsilon N)\right)$
Algorithm Guarantees

$s \in (0, 1)$ is support. In practice, $s = 10\epsilon$

Running Example: $\epsilon=0.001$, $s = 0.01$

- All n-grams with actual counts $> sN \cdot 10^4$ are output
- Returns no n-grams with actual counts $< (s\epsilon)N \cdot 9000$
- All reported counts \leq actual counts by at most $\epsilon N \cdot 1000$
- Space used by the algorithm: $O(\frac{1}{\epsilon} \log(\epsilon N))$

- In practice, set $s = \epsilon$ to retain all generated counts
- n-grams appearance more valuable than their counts
Evaluating stream n-gram counts

Data: English side of Europarl (EP): **38 million** words
Portions of Gigaword i.e. afe and nyt + EP (EAN): **1.4 billion** words

Accuracy: Ratio of # of sorted Top K stream n-grams found in # of Top K sorted true n-grams (Higher is better)

<table>
<thead>
<tr>
<th>ϵ</th>
<th>Accuracy</th>
<th>Top K</th>
</tr>
</thead>
<tbody>
<tr>
<td>5×10^{-8}</td>
<td>0.99</td>
<td>100k</td>
</tr>
<tr>
<td>2×10^{-8}</td>
<td>0.93</td>
<td>500k</td>
</tr>
<tr>
<td>1×10^{-8}</td>
<td>0.72</td>
<td>1000k</td>
</tr>
<tr>
<td>2×10^{-8}</td>
<td>0.50</td>
<td>2000k</td>
</tr>
<tr>
<td>5×10^{-8}</td>
<td>0.36</td>
<td>4018k</td>
</tr>
</tbody>
</table>
Evaluating stream n-gram counts

Data: English side of Europarl (EP): *38 million* words
Portions of Gigaword i.e. afe and nyt + EP (EAN): *1.4 billion* words

Accuracy: Ratio of # of sorted Top K stream n-grams found in # of Top K sorted true n-grams (Higher is better)

<table>
<thead>
<tr>
<th>ϵ</th>
<th>5-gram produced</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>50e-8</td>
<td>245k</td>
<td>0.29</td>
</tr>
<tr>
<td>20e-8</td>
<td>726k</td>
<td>0.33</td>
</tr>
<tr>
<td>10e-8</td>
<td>1655k</td>
<td>0.35</td>
</tr>
<tr>
<td>5e-8</td>
<td>4018k</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Table: Evaluating quality of 5-gram stream counts for different settings of ϵ on EAN corpus
Evaluating stream \(n \)-gram counts

Data: English side of Europarl (EP): \textit{38}mill\textit{ion} words
Portions of Gigaword i.e. afe and nyt + EP (EAN): \textit{1.4}billion words

Accuracy: Ratio of # of sorted Top \(K \) stream \(n \)-grams found in # of Top \(K \) sorted true \(n \)-grams (Higher is better)

<table>
<thead>
<tr>
<th>(\epsilon)</th>
<th>5-gram produced</th>
<th>Acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>50e-8</td>
<td>245k</td>
<td>0.29</td>
</tr>
<tr>
<td>20e-8</td>
<td>726k</td>
<td>0.33</td>
</tr>
<tr>
<td>10e-8</td>
<td>1655k</td>
<td>0.35</td>
</tr>
<tr>
<td>5e-8</td>
<td>4018k</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Table: Evaluating quality of 5-gram stream counts for different settings of \(\epsilon \) on EAN corpus

<table>
<thead>
<tr>
<th>Top (K)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>100k</td>
<td>0.99</td>
</tr>
<tr>
<td>500k</td>
<td>0.93</td>
</tr>
<tr>
<td>1000k</td>
<td>0.72</td>
</tr>
<tr>
<td>2000k</td>
<td>0.50</td>
</tr>
<tr>
<td>4018k</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Table: Evaluating top \(K \) sorted 5-gram stream counts for \(\epsilon=5e-8 \) on EAN corpus
SMT Experimental Setup

- Language Model data: EP and afe + nyt + EP (EAN)
- Development and Test set: News corpus of 1057 and 3071 sentences
- Evaluation on uncased test-set using BLEU metric (Higher is better)

Models Compared:
- 4 baseline LMs (3, 5-gram on EP and EAN)
- Count and Entropy pruning 5-gram LMs
- Stream count LMs computed with two values of e^{-8} and e^{-10} on EAN corpus
SMT Experimental Setup

- Language Model data: EP and afe + nyt + EP (EAN)
- Development and Test set: News corpus of 1057 and 3071 sentences
- Evaluation on uncased test-set using BLEU metric (Higher is better)

Models Compared:
- 4 baseline LMs (3, 5-gram on EP and EAN)
- Count and Entropy pruning 5-gram LMs
- Stream count LMs computed with two values of $5e^{-8}$ and $10e^{-8}$ on EAN corpus
SMT Experiment Results

n-gram(ϵ)	**BLEU**	**Mem GB**
3 EP | 25.6 | 2.7
5 EP | 25.8 | 2.9
3 EAN | 27.0 | 4.6
5 EAN | **28.7** | **20.5**

100 count cutoff	**BLEU**	**Mem GB**
28.0 | 2.8

5e-7 ϵ entropy	**BLEU**	**Mem GB**
28.1 | 3.0

n-gram(ϵ)	**BLEU**	**Mem GB**
5(10e-8) | 28.0 | 2.8 |
5(5e-8) | 28.0 | 2.8 |
7(10e-8) | 28.0 | 2.9 |
9(10e-8) | 28.2 | 2.9 |

Baselines: Large LMs effective

Stream counts findings:
- Effective as pruning methods
- 0.7 Bleu worse to exact
- Memory Efficient
- 7 and 9-gram are also possible
Take Home Message:

- Directly estimate small model
- Memory efficient
- Counts are effective
Discussion

Take Home Message:

- Directly estimate small model
- Memory efficient
- Counts are effective

Future Directions:

- Use these LMs for speech recognition, information extraction etc.
- Streaming in other NLP applications
- Build streaming class-based and skip n-gram LMs
Take Home Message:
- Directly estimate small model
- Memory efficient
- Counts are effective

Future Directions:
- Use these LMs for speech recognition, information extraction etc.
- Streaming in other NLP applications
- Build streaming class-based and skip n-gram LMs

Thanks! Questions?