
Perception Coprocessors for Embedded Systems

Binu Mathew, Al Davis, Ali Ibrahim

School of Computing, University of Utah

{mbinu | ald | ibrahim}@cs.utah.edu

Abstract

Recognizing speech, gestures, and visual features are im-
portant interface capabilities for embedded mobile sys-
tems. Perception algorithms have many traits in common
with more conventional media processing applications.
The primary motivation for this work is that applications
such as real-time, speaker-independent, large-vocabulary,
domain-independent continuous speech recognition sys-
tems require more performance than is currently avail-
able on embedded processors. Even on modern high-
performance processors the performance is just barely
able to keep up with real-time demands while consuming
power at a rate that is well beyond what can be sustained
on mobile systems. The solution to this dilemma has tra-
ditionally been to design a special ASIC. ASIC design
however is both expensive and lacks the generality needed
to support different phases of a complex algorithm or even
evolutionary improvements to base method. This paper
introduces an execution cluster based coprocessor archi-
tecture and its CMOS implementation. This is compared
against software implementations of algorithms running
on a general purpose processor and also against custom
ASICs. The cluster achieves an order of magnitude im-
provement in energy consumption over a conventional
processor while retaining a reasonable level of generality.
The architecture is evaluated on several important per-
ception applications where energy consumption is shown
to improve by a factor of 12-55 times and energy-delay
product improves by a factor of 3.8 - 40 times over con-
ventional processor approaches.

1 Introduction

The focus on embedded computing has both diversified
and intensified as mobile computing, ubiquitous comput-
ing, and traditional embedded applications continue to
converge. There is a need to support sophisticated appli-
cations such as speech recognition, visual feature recogni-
tion, secure wireless networking, and general media pro-
cessing in mobile embedded platforms. The problem is
that these applications require significantly more perfor-
mance than current embedded processors can deliver, and

running them on high-performance processors would con-
sume an intractable level of power. The usual solution to
this dilemma is to design a custom ASIC. ASIC design cy-
cles are both long and costly and the level of specialization
often limits their utility to a single phase and instance of
the application. Reconfigurable hardware approaches are
flexible but they sacrifice both performance and power to
a degree that is intolerable for sophisticated applications
such as speech recognition.

This paper evaluates a methodology targeted at the
rapid creation of powerful energy-efficient coprocessors for
perception applications. The approach includes a special-
ized compiler to map applications onto a domain specific
function unit cluster which is general enough to support
multiple algorithms or multiple phases of a complex al-
gorithm. The compiler can further optimize the cluster
design to generate a custom ASIC design in much less
time than required for hand-built ASIC designs. The
cluster architecture concept is open ended. In this pa-
per we investigate the utility of two specific cluster ar-
chitectures: one for integer applications and another for
floating point applications. The compiler generates code
in a power-efficient manner that is essentially horizon-
tal micro-code. This provides fine-grained control over
data steering, clock gating, and function unit utilization.
Efficiency is primarily the result of minimized communi-
cation. Data values are transported only once and only
when required; the inherent registers in bypass paths are
utilized to avoid unnecessary accesses to a register file
while also providing a form of register renaming. The re-
sulting active data-path is very close to a custom ASIC
for the application. However the active data-path in the
cluster does utilize multiplexer circuits that provide gen-
erality but would be missing in a custom ASIC design.
Hence increased customization removes these multiplex-
ers which further reduces power consumption at the cost
of reduced generality.

The result is an architecture which is powerful enough
to support complex perception algorithms, such as speech
recognition, at energy consumption levels commensurate
with mobile device requirements. The approach repre-
sents a middle ground between general purpose embedded
processor architectures and ASICs. The cluster approach

achieves a design efficiency that cannot be achieved by a
highly specialized ASIC, while delivering a performance
and energy efficiency that cannot be matched by general
purpose processor architectures.

The benefit of this approach is tested on five bench-
marks that were chosen both for their importance in fu-
ture embedded systems as well as for their algorithmic va-
riety. Three represent key components of perception sys-
tems and the other two were chosen from encryption and
DSP domains to test generality of the approach. The first
two benchmarks, GAU and HMM, represent the Gaussian
and Hidden Markov Model evaluation algorithms which
account for over 99% of the execution time for the CMU
Sphinx3 speech recognition system [9]. We have applied
cache and memory system optimizations to the original
algorithms [15]. The third benchmark, ANN (artificial
neural network evaluation), is a key component of visual
feature recognition [17] The fourth benchmark is the AES
encryption standard, Rijndael. The final benchmark is
a 16 tap FIR filter, a common DSP component used in
many embedded applications.

In order to compare this approach to the the competi-
tion, four different implementation of each benchmark is
considered:

1. C source code compiled and executed on a 2.4 GHz
Intel Pentium 4 processor. We note that the Pentium
4 is not optimized for energy efficiency but more effi-
cient processors can not currently support real-time
perception tasks such as speech recognition. Addi-
tional issues are discussed in section 3.

2. A clustered implementation generated by our micro-
code compiler from static single assignment code.

3. A custom hardware implementation which is gener-
ated from the clustered implementation by removing
any data paths and multiplexer ports that are not
needed by a particular application.

4. A custom designed ASIC which is highly optimized
for the particular algorithm.

In the next section, we delve into the details of our
architecture. A more detailed description of the charac-
teristics of the perception benchmarks and arguments in
favor of why the architecture is well suited for perception
may be found in [15, 14].

2 Architecture

The common trait exhibited by perception applications
and other continuous media is that data is periodic,
stream oriented, and must meet real time deadlines. In-
put data blocks vary with the specific algorithm but are

small enough to easily fit in an on-chip SRAM buffer. An
input data block is accessed until an output block and
state information is generated and then the input block
is discarded and the process repeats itself. The state in-
formation storage requirement is also small and capable
of being resident in on-die SRAM array. The output block
can be streamed out of the coprocessor as it is created.

These intrinsic data properties lead to a high perfor-
mance implementation in the form of a Decoupled Ac-
cess/Execute coprocessor architecture (DAE). The high
level organization of such an accelerator is depicted in
Figure 1. In DAE designs, data is pushed into a coproces-
sor by a host processor or memory controller. Processed
data is removed periodically by the host processor, but
the coprocessor handles the rest of a constant rate com-
pute intensive task on its own. For algorithms with simple
periodic access patterns, address generation may also be
entrusted to the coprocessor which allows the main pro-
cessor to proceed in parallel with other tasks.

In this paper we compare two kinds of coprocessor im-
plementations: 1) a domain specific execution cluster run-
ning software and 2) a custom execution unit. A 300 MHz
host CPU with an instruction set similar to a MIPS R4600
has also been designed, but it is not the focus of this pa-
per. The 300 MHz target was chosen to make the pro-
cessing power of the host CPU similar to the well-known
Intel StrongARM processor. Our designs were done in a
2.5 volt 0.25µ CMOS process.

2.1 Cluster Architecture

Execution clusters in this context are comprised of mul-
tiple function units that may be tailored to the specific
functional needs of one or more applications. The overall
data flow between the function units within a cluster is
controlled by microcode generated by our compiler. Soft-
ware control allows a particular instance of an execution
cluster to support more than for just a single application.
Figure 2 shows the internal organization of a cluster. In
our current implementation, a cluster can have at most 7
function units and a register file. The limit of 7 FUs is
not fundamental to the architecture, but is imposed by
the maximum bypass path complexity that can be tol-
erated to achieve a clock rate of 300 MHz in our target
process. Increasing the number of function units adds
potential parallelism but increases the multiplexer delay.
For generality, the multiplexers must have a port for each
functional unit plus an additional port for the register
file. Most function units operate on 2 input operands
and generate a single result. The exception is load/store
units which access SRAM arrays. All data-paths are 32
bits wide.

The architecture supports multi-cycle communication
between multiple on-chip execution clusters. However,

Execution
Cluster

Input
SRAM Host

Interface

Output
SRAM

Host
Interface

Scratch
SRAM

u-Code
SRAM

Figure 1: Coprocessor Organization

...
A, B

Operand
from
Regf

7 x Bypass
Inputs from

FUs

FU Output
to Regf
and Bypass

FU 1

...
A, B

Operand
from
Regf

7 x Bypass
Inputs from

FUs

FU Output
to Regf
and Bypass

FU 7

Register
File

Remote
Cluster
Input

7 x Inputs
from FUs

...
Data out:

2 x Remote cluster
14 x FU Inputs

Figure 2: Cluster Organization

our micro-code compiler has not yet been extended to
handle inter-cluster communication and therefore only
single cluster properties are discussed in this paper.

Figure 3 shows the internal organization of the register
file. To accommodate the storage requirements of 7 FUs,
the register file provides 14 outputs and an additional
2 outputs for inter-cluster communication. The physical
register file has only 4 read ports and 2 write ports. The
4 physical read ports are shared across 16 output connec-
tions. Only 4 individual values may be fetched from the
register file in each cycle, but those values may be sent
to any or all of the 16 output connections. Similarly, the
2 physical write ports are shared across 8 data inputs, 7
of which are the FU outputs and 1 input is reserved for
inter-cluster communication.

Figure 4 shows the micro-architecture of a function
unit. A function unit receives each of its two input
operands from the output of an 8 to 1 mux. This multi-
plexed input provides full forwarding capability within a
cluster. Each input operand can originate from the regis-
ter file or the output stage of an FU within the same clus-

Mux 8x1 Mux 8x1

CLOCK
Output
Enable

Remote
Access
Port ...

FU Outputs

...
FU Outputs

Pipeline Reg

2 x Shared
physical

write ports

4 x Shared
physical
read ports

Mux 8x1

4 x Shared
Constants from

code

To FU
Input port

Repeated
16 x

32 x 32-bit
Register

Figure 3: Register File Organization

Mux 8x1 Mux 8x1

Pipeline Reg

Pipeline Reg

CLOCK
Enable

CLOCK
Output
Enable

From
Regfile ...

Other FUs From
Regfile...

Other FUs

FU Output

Compiler
Controlled

Bypass
Mux

Compiler
Controlled

Clock
Gates

Figure 4: Function Unit Organization

ter. The forwarding mux is controlled by the microcode.
Each FU has a pipeline register at its output and the load
enable for this register is also software controlled. With
the exception of add/sub and logic units, all FUs are in-
ternally pipelined and controlled by the compiler. The
types of FUs are:

Integer Units perform add, subtract, compare and con-
ditional move with 1 cycle latency. The boolean result of a
compare operation can target any of 4 single-bit predicate
registers local to the FU. A conditional move operation
routes one of the two FU operands to the output port
depending on the value of a predicate register.
Logic Units implement and, or, xor, byte select, byte
merge, sign extension of constants etc with 1 cycle la-
tency.

Multiply Units implement integer multiplication with 3
cycle latency.
Floating Point Units implement IEEE 754 format multi-
ply, add, subtract and fused multiply add operations with
9 cycle latency. Though inputs and outputs are IEEE 754
format, internally the mantissa precision is reduced to 13
bits. This reduces power consumption by approximately
a factor of 4 compared to full precision while still mak-
ing floating point available to applications that need a
large range. The choice of a 13-bit mantissa is motivated
by empirical studies of our two floating-point intensive
benchmarks (ANN, Gaussian). In both cases, reducing
the mantissa from the normal IEEE 754 by 9 bits does
not noticeably impact that accuracy of either algorithm
[15].

The Load/Store Unit permits the cluster to treat the
input, output and scratch SRAMs as a single memory.
Two read/write ports are available and these ports ap-
pear as two FUs to the other function units. Reads have
a 2 cycle latency. The memories are implemented using
dual port synchronous SRAMs. Input and output mem-
ories are double buffered so that the host can access data
concurrently with the cluster. The scratch SRAM does
not need to be double buffered. Currently the input and
output SRAMs are 2KB and the scratch memory is 8KB
in size. These size choices are motivated by the worst
case needs of our 5 benchmarks: the largest stream input
block is 1.2KB for Gaussian and the Rijndael scratch pad
requirement is 5KB for the lookup table. In our process,
leakage power is very small. SRAM power consumption
is therefore more dependent on the number of sense amps
than memory capacity. We chose the next larger power
of 2 sizes for these SRAM arrays to simplify addressing.
Note that load/store accesses in the cluster can target
only the local SRAM. It is not possible for the cluster to
access external memory without assistance from the host
CPU.

While the architecture, interconnect and compiler are
easily and highly customizable, this paper considers only
two specific cluster configurations: a floating point cluster
and an integer cluster. The function units in each clus-
ter were selected to maximize average throughput of the
benchmark suite and to maintain functional generality
of the cluster. The integer cluster contains 2 load/store
ports, 2 integer units, 2 logic units, and a multiply unit.
The floating point cluster contains 3 floating point units, 2
load/store ports, and 2 integer units. The SRAM macro
cells for the CMOS process we use has only two ports
which motivates the 2 load/store ports per cluster limit.
Rijndael is very logic intensive and therefore 2 logic units
support this need. HMM and FIR both need a multi-
plier. ANN and Gaussian are floating point intensive.
Two load/store ports are needed to support SRAM ac-
cess, and 2 integer units are needed to support conditions

and basic integer operations. Since the number of func-
tion units must be limited to 7, this leaves room for 3
floating point units. Both ANN and Gaussian could ben-
efit from extra floating point units but the loss of per-
formance due to additional multiplexing delays would be
unacceptable.

Micro-programs are executed out of a 220-bit wide 256-
word single port synchronous memory. These choices are
also based on worst case needs of our benchmark suite.
While a larger and broader application suite will change
these choices, we do not expect the architectural differ-
ences to be large since they are more constrained by gen-
erality and frequency issues than by algorithmic differ-
ences. The exception is the floating point precision issue.
The biggest algorithmic sensitivity is that both perfor-
mance and energy consumption will vary with algorithmic
complexity.

2.2 Clock Gating Support

The entire cluster is clock gated at a very fine granular-
ity. This includes both the function units and the output
registers of the register file. For function units, there
are two separate clock gating signals: one for the final
pipeline register and the other for internal pipeline regis-
ters. Both signals are controlled by the microcode. This
strategy permits power optimization as well as control
over the lifetime of values in flight within the cluster. The
final pipeline register is clocked only when a value needs
to be latched and the value is retained as long as the
compiler considers it necessary. This converts the output
registers and the bypass muxes into the equivalent of a
small (7 entry) register file that the compiler can explic-
itly address. The compiler uses this fine grain control for
two purposes: a) unnecessary value changes on high ca-
pacitance forwarding wires are prevented to save power,
and b) to create data flows similar to a custom circuit
to increase throughput. Paths are dynamically setup and
torn down depending on the state of the computation and
how well the currently executing section of the algorithm
maps onto the cluster. Operands provided by the reg-
ister file are also gated and controlled by the compiler.
Values from the register file and constants from micro-
code may be placed into the register file output registers
and held indefinitely. This facilitates creation of dynamic
structures like address generators.

2.3 ASIC Architectures

The ASIC architectures evaluated here use the same 3
SRAM organization shown in Figure 1. The custom co-
processor for GAU consists of a pipeline containing the
same reduced precision floating point circuits but orga-
nized in to perform (a− b)2 ∗ c, Σ and a ∗ b+ c, Σ calcula-

tions. Since Σ represents a multi-cycle floating point ad-
dition in the final stage of the pipeline, there is a problem
with maintaining the flow. This is cured by interleaving
the evaluation of 10 separate input vectors. The cost is
a trivial increase in storage. The ANN architecture only
uses the a ∗ b + c, Σ stages, bypassing the earlier stages
and uses a similar interleaving strategy.

For Rijndael, we use a publicly available ASIC core
from OpenCores. Each encryption S-box is represented
as a 256-entry lookup table. The custom hardware uses
16 copies of this lookup table corresponding to 16 KBytes
of SRAM resources. It is able to encrypt a 128 bit block
in 12 cycles. The cluster version on the other hand is
limited to two table lookups because of the paucity of
load/store ports.

The accelerator for the FIR uses 16 multipliers that
work in parallel, connected to a shift register to do one
round of FIR. Since the multipliers have 3 cycle latency,
and are fully pipelined, one round of FIR can be done in
each cycle.

The ASIC versions provide maximum throughput, but
they all use much more chip area than the cluster. They
represent an upper bound on performance but lack gener-
ality.

3 Experimental Method

Our method of evaluation is based on designing hard-
ware for each cluster configuration (the entire organiza-
tion shown in Figure 1), simulating the hardware at the
transistor level using Spice and running the micro-code
for our benchmarks during the Spice simulation. Energy
consumption is then calculated based on the supply cur-
rent waveform generated by Spice. The SRAMs we use
are macro-cells generated by our CAD suite and simu-
lating the entire SRAM array using Spice is not feasible.
For the SRAMs we therefore log each read, write and idle
cycle and compute the energy consumption based on the
read, write and idle current reported by the SRAM gener-
ator. Each benchmark is run 10 or more times, but with
the same randomly generated input data. We simulate
the coprocessor only. The host processor is not simulated.

The function units in a cluster are described in Verilog
and Synopsys MCL hardware description languages. The
cluster organization and interconnection between clusters
is automatically generated by the compiler. The whole
design is then synthesized to the gate level and a clock
tree is generated. The net list is then annotated with
worst case RC wire loads assuming all routing happened
on the lowest metal layer. The energy measurements are
therefore pessimistic and represent a worst case bound
for each design. Exact measurements are extremely sen-
sitive to wire routing decisions and as a result we calculate

our wire capacitance based on the worst wire layer. The
Spice model is then simulated with NanoSim, a commer-
cial VLSI tool with Spice-like accuracy. Transistor models
and CMOS process parameters are those measured for a
test chip built in the same technology. The micro-code
corresponding to the benchmark is loaded into program
memory and the circuit is simulated in NanoSim/Spice for
the duration of several input packets. The RMS current
reported by Spice is used to calculate energy consump-
tion.

The software version of each benchmark is compiled
with the GNU GCC compiler and run on a 2.4 GHz In-
tel Pentium 4 processor. This system has been modified
at the board level to permit measuring average current
consumed by the processor module using a digital oscillo-
scope and non-intrusive current probe. The code is iden-
tical to that used by our micro-code compiler. It consists
of the algorithm represented in a static single assignment
style after fully unrolling all loops.We ensure that the
input data always hits in the L1 Cache so that the L2
Cache and memory system effects are isolated as much as
possible.

We used a Pentium 4 as the comparison because embed-
ded processors like the StrongARM do not have either the
floating point instructions or the performance required for
our benchmarks. We believe that software emulated float-
ing point will greatly bloat the energy delay product of the
StrongARM and make a meaningful comparison impossi-
ble. Another reason for the choice was technical feasibility
of measuring processor power. For example, the Intel XS-
cale (StrongARM) development platform we investigated
had a processor module board with FPGA, Flash mem-
ory etc integrated on it and isolating the processor power
was difficult. The particular Pentium 4 system we used
was chosen because the layout of the PCB permitted us to
de-solder certain components and make modifications to
permit measuring the energy consumption of the proces-
sor core alone. Hopefully a more meaningful comparison
can be made when the Intel Banias processor which is ex-
pected to be energy-efficient becomes available later this
year.

4 Results

The energy to process one input block obtained from
Spice or by actual measurement is used to calculate the
energy advantage (ratio) for the cluster and custom cir-
cuits over the general purpose processor. The energy was
normalized for the CMOS process feature-size, λ, before
taking the ratio as described in [6].

Figure 5 shows that the custom approach provides 2
to 3 orders of magnitude improvement over the CPU
while the cluster provides more than an order of mag-

hmm ann gau Rijn fir

Benchmark

1.0

10.0

100.0

1000.0

10000.0

E
ne

rg
y

A
dv

an
ta

ge
 O

ve
r C

P
U

33
.8

17
.8

12
.1

55
.8

44
.3

26
5.

0

18
2.

3

27
2.

3

13
98

.4

13
20

.1Cluster
Custom

Figure 5: Energy Advantage

nitude advantage while retaining a large fraction of the
generality of the general-purpose processor approach. In
CMOS circuits, it is often possible to trade energy for in-
creased delay. This is a bad choice when the system has
stringent throughput requirements. An effective way of
comparing the architectural advantage is to consider the
energy-delay product which is a very difficult quantity to
improve in the general case [6]. Figure 5 shows the ad-
vantage of the cluster and custom architectures over the
CPU after normalizing for λ. For the two non-perception
benchmarks the custom approach demonstrates a huge
improvement over software since these are known to have
efficient hardware implementations. The perception algo-
rithms are much more difficult to improve without signif-
icant hardware resources. The cluster is able to achieve
good improvement with modest resources, e.g. less than
5% of the area of a typical 10mm x 10mm microprocessor
die. Cluster performance is limited by 3 factors: a) the
scheduling policy of our compiler is several times worse
than a manual schedule, b) our floating point units are au-
tomatically synthesized from HDL and are 9 times slower
than Intel’s custom designed FPU, and c) the forwarding
paths and register file are more general purpose than they
need to be which wastes some power. In later work, we
have been able to improve on issues a and c. Nonethe-
less, the custom architectures prove that it is possible to
do sophisticated perception algorithms at power budgets
commensurate with embedded platforms. The cluster ap-
proach further demonstrates the possibility of achieving
this goal without sacrificing generality within the domain.

hmm ann gau Rijn fir

Benchmark

1.0

10.0

100.0

1000.0

10000.0

100000.0

E
ne

rg
y-

D
el

ay
 P

ro
du

ct
 A

dv
an

ta
ge

 O
ve

r C
P

U

15
.3

8.
3

3.
8

40
.0

27
.1

14
5.

2

25
0.

0 51
1.

3

15
29

2.
9

24
21

4.
2

Cluster
Custom

Figure 6: Energy-Delay Product Advantage

5 Related Work

Scheduling tactics for power-efficient embedded proces-
sors have achieved reasonably low power operation but
they have not achieved the performance/power efficiency
of the work described here [8]. Reconfigurability using
FPGA devices and hybrid approaches have been explored
[2, 3]. These approaches offer generality but not at a
performance level that can support perception applica-
tions. Of particular relevance are compiler directed ap-
proaches which are similar to that described here but our
approach targets custom silicon rather than FPGA de-
vices [16]. Customizing function units in a VLIW archi-
tecture has been studied and the Tensilica Xtensa is a
commercial instance of this approach [5]. Clock power is
often the largest energy culprit in a modern microproces-
sor [7]. Krashinsky describes the benefits of clock gating
[11]. There are two disadvantages of clock gating: the
enable signal must arrive sufficiently ahead of the clock
signal, and the use of additional gates in the signal path
will increase clock skew. Both effects reduce the maxi-
mum achievable clock frequency. For low-power designs,
this is seldom a serious issue.

Tiwari et al have explored scheduling algorithms for less
flexible architectures which split an application between
a general purpose processor and an ASIC [19]. Lee et al
shows instruction scheduling benefits for DSP processors
[13]. Eckstein and Krall focus on minimizing the cost
of local variable access to reduce power consumption in
DSP processors [4]. CALiBeR reduces memory pressure
in VLIW systems but cannot directly schedule activities
to reduce register file communication at the cluster level
[1]. Application specific clusters are investigated in [12].
This complementary scheduler approach minimizes inter-

rather than intra-cluster communication.
Efforts have demonstrated the benefit of VLIW archi-

tectures for either customization or power management
[18]. Optimization techniques for VLIW architectures us-
ing clusters can also be found in [10]. These efforts do
not address low-level communication issues. The RAW
machine has demonstrated the advantages of low level
scheduling of data movement and processing in function
units spread over a 2 dimensional space [20]. The RAW
work is similar, but is aimed at high performance rather
than power efficiency.

6 Conclusions

Combining domain specific execution clusters and com-
piler directed clock gating can produce high performance
low-power accelerators for perception applications in the
embedded space. Our approach has demonstrated im-
provements in the energy delay product from 3.8 to 40
for a range of important benchmarks. Additional work,
not presented in this paper, has demonstrated that perfor-
mance can be quite close to that of an optimized custom
circuit if the cluster is scheduled manually. Efforts are
underway to incorporate our manual algorithms into the
compiler and to make the interconnect architecture more
closely resemble the data flow patterns that commonly
occur in perception codes. This paper has demonstrated
that a cluster based approach makes perception process-
ing possible on embedded architectures at performance
levels matching or exceeding high performance proces-
sors and at energy levels commensurate with low-power
platforms.

References

[1] Akturan, C., and Jacome, M. F. FDRA: A
software-pipelining algorithm for embedded VLIW
processors. In ISSS (2000), pp. 34–40.

[2] Callahan, T., and Wawrzynek, J. Adapt-
ing software pipelining for reconfigurable computing.
In Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embed-
ded Systems (CASES) (San Jose, CA, 2000), ACM.

[3] DeHon, A. DPGA-coupled microprocessors: Com-
modity ICs for the early 21st century. In IEEE Work-
shop on FPGAs for Custom Computing Machines
(Los Alamitos, CA, 1994), D. A. Buell and K. L.
Pocek, Eds., IEEE Computer Society Press, pp. 31–
39.

[4] Eckstein, E., and Krall, A. Minimizing cost
of local variables access for DSP-processors. In

LCTES’99 Workshop on Languages, Compilers and
Tools for Embedded Systems (Atlanta, 1999), Y. A.
Liu and R. Wilhelm, Eds., vol. 34(7), pp. 20–27.

[5] Faraboschi, P., Brown, G., Fisher, J. A., Des-

oli, G., and Homewood, F. Lx: a technology
platform for customizable VLIW embedded process-
ing. In The 27th Annual International Symposium on
Computer architecture 2000 (New York, NY, USA,
2000), ACM Press, pp. 203–213.

[6] Gonzalez, R., and Horowitz, M. Energy dis-
sipation in general purpose microprocessors. IEEE
Journal of Solid-State Circuits 31, 9 (September
1996), 1277–1284.

[7] Gowan, M. K., Biro, L. L., and Jackson, D. B.

Power considerations in the design of the alpha 21264
microprocessor. In Design Automation Conference
(1998), pp. 726–731.

[8] Hoogerbrugge, J., and Augusteijn, L. Instruc-
tion scheduling for TriMedia. Journal of Instruction-
Level Parallelism, 1(1) (Feb. 1999).

[9] Huang, X., Alleva, F., Hon, H.-W., Hwang,

M.-Y., Lee, K.-F., and Rosenfeld, R. The
SPHINX-II speech recognition system: an overview.
Computer Speech and Language 7, 2 (1993), 137–148.

[10] Karl, W. Some design aspects for VLIW architec-
tures exploiting fine - grained parallelism. In Parallel
Architectures and Languages Europe (1993), pp. 582–
599.

[11] Krashinsky, R. Microprocessor energy characteri-
zation and optimization through fast, accurate, and
flexible simulation. Master’s thesis, Massachusetts
Institute of Technology, May 2001.

[12] Lapinskii, V., Jacome, M., and de Veciana, G.

Application-specific clustered vliw datapaths: Early
exploration 32 on a parameterized design space,
2002.

[13] Lee, C., Lee, J. K., Hwang, T., and Tsai, S.-C.

Compiler optimization on instruction scheduling for
low power. In ISSS (2000), pp. 55–61.

[14] Mathew, B., Davis, A., and Evans, R. A char-
acterization of visual feature recognition. Tech. Rep.
UUCS-03-014, School of Computing, University of
Utah, 2003.

[15] Mathew, B., Davis, A., and Fang, Z. A Low-
Power Accelerator for the SPHINX 3 Speech Recog-
nition System. In Proceedings of the International

Conference on Compilers, Architecture and Synthe-
sis for Embedded Systems (CASES ’03) (October
2003).

[16] Memik, S. O., Bozorgzadeh, E., Kastner, R.,

and Sarrafzade, M. A super-scheduler for em-
bedded reconfigurable systems. In ICCAD (2001),
pp. 391–.

[17] Rowley, H. A., Baluja, S., and Kanade, T.

Neural network-based face detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
20, 1 (1998), 23–38.

[18] Smith, M. D., Lam, M., and Horowitz, M. A.

Boosting beyond static scheduling in a superscalar
processor. In Proceedings of the 17th Annual Sympo-
sium on Computer Architecture (1990), pp. 344–354.

[19] Tiwari, V., Malik, S., Wolfe, A., and Lee, M.

Instruction level power analysis and optimization of
software, 1996.

[20] Waingold, E., Taylor, M., Srikrishna, D.,

Sarkar, V., Lee, W., Lee, V., Kim, J., Frank,

M., Finch, P., Barua, R., Babb, J., Amaras-

inghe, S., and Agarwal, A. Baring it all to soft-
ware: Raw machines. Computer 30, 9 (1997), 86–93.

