
1

1 Introduction

Data transfers in computing systems can be roughly
split into two categories: memory transfers and I/O
transfers. Both types of transactions utilize a common
system bus. A great deal of research and subsequent
progress has focused on increasing the effective bandwidth
and reducing the latency of memory transfers since these
metrics have a significant impact on uniprocessor program
performance. Meanwhile, I/O performance has received
comparatively minor levels of attention from processor
designers. This lack of attention creates a significant I/O
bottleneck as interest moves towards supporting efficient
fine grain multiprocessor communication in clusters and
networks of workstations. The problem is exacerbated by
system bus occupancy and synchronization overheads
[5][10] when the nodes of these systems are themselves
shared memory symmetric multiprocessors.

Many of the optimizations used to reduce or hide main
memory latency cannot be directly applied to I/O transfers.
The main problem is that I/O transfers potentially have
side-effects, such as initiating a DMA transfer, clearing
status bits, or removing data from a receive queue. This
forces I/O transfers to be done in strict program order, non-
speculatively, and exactly once. The result is that I/O
stores usually bypass the cache hierarchy and every store
directly initiates a bus transactions.  This wastes precious
system bus bandwidth since the bus has been optimized for
cache line sized transfers, significantly limits effective I/O
bandwidth, and incurs high levels of synchronization
overhead.  The purpose of this paper is to provide a simple
and cheap solution to this problem called theconditional
store buffer or CSB.

The key feature of the CSB is that it is software
controlled, uncached, and allows multiple I/O stores to be
combined.  The result is that I/O performance can be
significantly improved for a minor increase in hardware
complexity.  System bus designs are optimized for main
memory accesses and therefore provide maximum
effective bandwidth for cache line sized transactions. The
CSB design allows I/O stores to be combined into a single
bus transaction up to a maximum size of one cache line.
This permits I/O performance to approach that of main
memory bandwidth and removes the need for costly
synchronization operations in order to access I/O devices.
The CSB also permits user-level code to explicitly control
which stores will be combined andwhen the combined set
of stores will be issued on the system bus. This guarantees
that the sequence of combined store instructions is atomic
and provides the necessaryexactly once semantics for the
resulting bus transaction.

Figure 1 shows a block diagram of a conventional
system with a 2-level cache hierarchy and a typical
uncached load and store capability that has been enhanced
with the addition of a CSB. Conventional uncached loads
and stores can be handled in the normal manner [8], while
the combining store instructions are handled by the CSB.
The remainder of the paper discusses the motivations for

Improving I/O Performance with a Conditional Store Buffer

Abstract

Microprocessor I/O performance is becoming increas-
ingly critical in order to support efficient communication
interfaces as modern microprocessors continue to be used
in a variety of multiprocessor configurations. Numerous
performance enhancements have been made to improve
processor performance by improving the latency and
bandwidth to main memory or creating efficient mecha-
nisms to hide main memory latency. These include specu-
lative out of order instruction execution, lock-up free
caches, and improved memory bus designs. Sadly these im-
provements are not directly applicable to improved I/O
system performance and may even complicate high perfor-
mance I/O system design. This paper introduces and ana-
lyzes the design of a simple mechanism called the
conditional store buffer. The conditional store buffer im-
proves I/O write performance by making better use of the
system bus to increase effective I/O bandwidth, while
greatly reducing synchronization overhead. The cost is a
minor increase in hardware complexity.

Lambert Schaelicke and Al Davis

Computer Science Department
University of Utah

Salt Lake City, UT 84112
lambert@cs.utah.edu     ald@cs.utah.edu



2

such an architecture in more detail, describes the design of
the CSB, and analyzes the performance potential via
simulation results. The paper concludes with a qualitative
analysis, a discussion of related work that influenced the
CSB design, and a short summary section..

Figure 1: Architectural Model

2 Motivation

The recent interest in clusters of workstations creates
increased pressure on I/O system performance. The
speedup of a parallel application is ultimately limited by
the per-message overhead. A Berkeley NOW project study
[7] shows that program performance is more sensitive to
communication overhead than to latency. Another study
by Mukkerjee and Hill [10] found that the message data
transfer between the memory and the network interface
accounts for 20% to 42% of the total execution time for a
set of parallel scientific applications. The average message
size for these applications ranges from 19 to 230 bytes.
Due to the overhead involved in setting up a DMA transfer
between the network interface and main memory, short
messages are more efficiently transferred using
programmed I/O (PIO). Simulation results for a sender-
based message passing protocol [3] show that PIO is better
than DMA for messages shorter than 128 bytes.

Since I/O operations require anin-order exactly-once
semantics, transactions that target I/O devices can not be
reordered or executed multiple times. The result is that I/O
operations usually bypass the cache hierarchy. However,

issuing a bus transaction for each individual uncached load
or store instruction makes poor use of the system bus. The
result is increased bus occupancy, control overhead and
latency, resulting in lower bandwidth I/O transactions. To
alleviate this problem, some processor implementations
have introduced combining store buffers that try to reduce
the number of bus transactions. For instance, the PowerPC
620 combines up to two uncached stores of the same size
to consecutive addresses into a single bus transaction. The
accelerated store buffer in the R10000 [8] detects
sequential access patterns and combines subsequent stores
into a complete cache line if possible.

These hardware controlled schemes fail if the sequence
of stores is interrupted by a store to a different address. In
this case, the system interface must issue multiple single-
beat bus transactions. These combining store buffers are
therefore software-transparent optimizations and do not
provide precise control over the resulting bus transactions.
Furthermore, combining uncached stores involves a trade-
off between latency and bus utilization. To reduce I/O
latency, the store operation should be issued on the system
bus as soon as possible. On the other hand, combining is
more successful if transactions remain in the uncached
buffer for a long time. These trade-offs are different from
those faced by write buffers that are part of the cache
hierarchy [12], where pending stores are kept coherent
with successive loads or other caches, and store latency to
memory is only a secondary concern.

Several I/O adapter designs have achieved low latency
by taking advantage of the fact that individual bus
transactions are atomic. For instance, the Atoll network
interface [2] uses a single store instruction to initiate a
DMA operation, where both the source address and the
message length are packed into a single 64-bit word. The
HP Medusa network adapter [1] maintains kernel packet
buffer (mbuf) descriptors in on-board hardware FIFOs. A
single 32-bit store instruction can then be used to push a
new descriptor onto the transmit FIFO to initiate a packet
transfer. The primary advantage of these schemes is that
they don’t require costly locking overhead in order to
access the device. However, in many cases the amount of
data that needs to be transferred atomically exceeds the
size of a single uncached bus transaction. Unfortunately,
current combining store buffers are software transparent.
Hence they do not solve this dilemma since the software
cannot guarantee that certain transactions will be
combined.

The CSB combines the advantages of higher bandwidth
through the use of burst transactions with the ability to
explicitly combine several uncached stores into an atomic
transaction under software control. It introduces the notion
of a combining store instruction to communicate to the
CSB and control which stores are to be combined. A

processor

L1 cache

L2 cache

system interface

conditional

system bus

un
ca

ch
ed

 b
uf

fe
r

store
buffer

main
memory

I/O
adapters



3

dedicated flush instruction at the end of the store sequence
triggers the atomic bus transaction.

A difficulty occurs when multiple processes compete
for access to the CSB. To avoid deadlock problems while
achieving low latency device access, the CSB design uses
an optimistic non-blocking synchronization scheme
similar to the load-linked/store-conditional instruction pair
functionality of the MIPS architecture.

3 The Conditional Store Buffer Design

3.1 Instruction Set Architecture Modifications

The CSB design requires two additional architectural
modifications. First, software must be able to specify
which store instructions should be combined. The obvious
choice is to introduce a new instructionstore combine.
However, adding new instructions to an existing
architecture should not be taken lightly. We therefore use
existing memory mapping hardware to indicate which
addresses should be combined. Several architectures
already encode cache policies and other memory attributes
in page table entries. The PowerPC allows the
specification of write-through or write-back caching,
along with other attributes, on a per-page basis. In the
R10000, the accelerated uncached buffer is enabled by a
bit in the page table entry. Hence, the encoding of one
additional attribute is a minor extension to existing TLB
designs.

The second modification involves the addition of a
conditional-flush capability. The purpose of this
instruction is twofold. It has to trigger the flushing of the
CSB (if no conflict was detected), and signal the success of
the flush to the program. Our design uses the SPARC
atomic swap instruction, with a slight semantic variation if
the destination address is in uncached combining address
space.

The implementation of non-blocking synchronization
also requires that the current process ID be available to the
CSB at runtime, in order to detect conflicting accesses by
competing processes. Several architectures store the
process ID in a supervisor mode register to detect aliasing
of cache or TLB entries. For instance, MIPS defines an 8-
bit space identifier that helps to avoid flushing the TLB on
every context switch; PA-RISC uses an 18 bit address
space identifier to de-alias references to virtually
addressed caches; and the Alpha 21164 stores a 7 bit
process ID in a privileged register. This indicates that the
process ID can be communicated to the CSB without
extensive hardware modification.

3.2 Conditional Store Buffer Implementation

Figure 2 shows the structure of the conditional store
buffer. The data buffer provides space for one cache line
worth of data, the process ID, and the cache line aligned
address of the most recent combining store. The hit counter
is used to implement the non-blocking conditional flush
operation. It counts the number of consecutive stores that
have been issued by a process without conflict.

Figure 2: Conditional Store Buffer

When the buffer receives a combining store, it
compares the destination address and the current process
ID with the values that have been saved from the previous
store instruction. On a match, it stores the data in the
appropriate slot and increments the hit counter by one. If
the comparison fails: the buffer is cleared, the hit counter
is reset to 1, and the new data is stored. Note that
combining stores can be issued in any order, since only the
total number of stores is needed for conflict detection.

The conditional flush instruction communicates the
expected value of the hit counter. If the counter value is
equal to the value provided by the instruction, and the
destination address and process ID match the value present
in the CSB: the data is sent to the system interface as a
single burst transaction, and the buffer and hit counter are
cleared. If any of these conditions fails: the data register is
cleared, the counter is reset to zero, and nothing is issued
to the system interface.

Rather than introducing a new instruction, our
implementation uses the SPARC swap instruction for the
conditional flush. If the destination address is in uncached
combining address space, the instruction is sent to the
CSB. The conditional flush instruction leaves the value of
its source register unchanged if the flush succeeded,
otherwise it returns 0. The destination register value
should then be compared with the expected value to

address

counter

data buffer

transaction to system interface

storeconditional flush

PID



4

determine if the entire sequence was issued as an atomic
transaction. Software is responsible for recovery after a
failed flush, usually by branching back to the beginning of
the sequence of combining stores.

The following SPARC assembler code segment shows
an example of how software might access the CSB.

.RETRY:
set 8, %l4 ! expected value
! store 8 dwords in any order
std %f0,[%o1]
std %f10,[%o1+40]
! ... 5 additional dword stores
std %f12,[%o1+8]
swap [%o1], %l4 ! conditional flush
cmp %l4, 8 ! compare values
bnz .RETRY ! retry on failure

Suppose, for example, that this process is interrupted
before it executed the conditional flush instruction. The
first combining store of the competing process will clear
the buffer and reset the hit counter to 1. When the original
process attempts to flush the buffer, its process ID and/or
the expected counter value will not match the values stored
in the buffer and the conditional flush instruction will
return a 0 to signal the conflict.

This non-blocking policy removes the need to lock the
CSB prior to access and competing processes do not block
on a conflict [6]. The policy is optimistic in its assumption
that conflicts are rare and it is more cost effective to
replace heavyweight synchronization on every sequence
with a software recovery mechanism on a failed attempt.
Since lock-free synchronization schemes do not prevent
competing processes from accessing a resource, they do
not lead to problems like priority inversion or the difficulty
of deadlock avoidance.

Theoretically, it is possible for two processes to be
scheduled such that each continuously conflicts with the
other. There are numerous simple solutions for this
livelock scenario. One can limit the number of failed
conditional flushes, or use an exponential backoff
algorithm to reduce the likelihood of a conflict. It should
be noted that uncached loads bypass the combined stores.
This is reasonable because the combined stores have not
yet been committed by a conditional flush.

The size of the data register has been chosen to be a
single cache line, since the system interface and system
bus are already optimized to handle cache line sized burst
transfers. Since most system buses do not allow arbitrary-
length bursts, the CSB model in this study always issues a
full cache line, regardless of the number of combining
store instructions. This restriction could be relaxed in a
CSB design for a particular bus which permits multiple
burst sizes. Unused words are padded with zeroes since the

buffer will be cleared when the first conditional store
arrives, thus avoiding subtle security issues.

The single line buffer described here could be easily
extended with a second line buffer to increase pipelining
and avoid program stalls awaiting the completion of the
conditional flush instruction. After a conditional flush, the
CSB would switch to the second data register while
delivering the first one to the system interface. The same
effect can be achieved when the system interface provides
additional buffering.

Note that it is not strictly necessary to include the
destination address in the conflict check. However, this
allows detection of conflicts between competing threads
that might run under the same process ID.

3.3 System Implications

It should be noted that the performance improvement
that is made possible by the CSB also depends on the
ability of the target I/O device to accept burst writes. In
general, this increases the complexity of an I/O device. On
the other hand, the potential performance gain (presented
in section 4.3) more than justifies the increased cost. Note
also that many modern I/O adapters already provide this
capability.

4 Quantitative Evaluation

4.1 Architectural Model

The potential performance benefits of the CSB are
evaluated through execution driven simulation of a series
of microbenchmarks. The simulator is based on RSIM
[11]. Originally, RSIM was developed to study distributed
shared memory architectures. The interesting feature for
this effort is the fairly detailed dynamically scheduled
processor model. The processor model uses a unified
dispatch queue that keeps track of true data dependencies
and structural hazards. Instructions are issued out-of-order
as soon as their operands are available and results are
committed in order to facilitate precise interrupt handling.
The microarchitecture is similar to the R10000 or PA8000,
but is slightly more aggressive. RSIM executes SPARC
V9 binaries.

The simulator has been extended to support an
uncached address space. Loads and stores to this space are
issued to the system interface strictly in program order and
are non-speculative. Data values are not forwarded from a
store to a subsequent load, since the load might have a side
effect and therefore must be issued to the system bus.

In our experiments, the processor model is configured
to dispatch and retire a maximum of four instructions per
cycle. Instructions may issue up to two integer units and



5

two floating point units simultaneously. Memory
operations are handled in a separate queue, which
speculatively performs address calculations and executes
cached loads. Uncached operations are issued non-
speculatively, at or after the time they are retired from the
reorder buffer.

Regular uncached loads and stores are handled in an
uncached buffer. In its simplest form this is a queue that
buffers loads and stores until they can be sent to the system
interface. To model more aggressive combining schemes,
the uncached buffer can be configured to combine stores
whenever possible. A store may be coalesced into an
existing entry if its destination address falls into the same
block and it does not bypass an earlier load or barrier
instruction. The size of a buffer entry, and hence the
maximum number of combined stores, will be varied from
two words (16 bytes) to a 64 byte cache line. This covers
the wide variety of uncached store policies found in current
processors, ranging from non-combining to combining of
a full cache line.

Entries in the uncached buffer are processed in FIFO
order. Combining is limited by the time that an entry
spends waiting in the buffer. Memory barrier instructions
are prevented from graduating until the uncached buffer is
empty.

The conditional store buffer follows the design outlined
in the previous section. A part of the uncached address
space is designated as combining. Stores to these addresses
are combined in the CSB until they are committed. The
CSB has only one entry, hence stores following a flush
may stall until the entry has been sent to the system
interface.

Results are collected using two different system bus
models: multiplexed and split. Both buses are fully
pipelined, and arbitration is overlapped with the current
transaction. On the multiplexed bus, an address transfer
takes one extra cycle, while the split bus has separate
address and data paths. The width of the bus, as well as the
clock frequency ratio between processor and bus can be
varied. Unless otherwise noted, the simulations assume
that no idle cycle is necessary between transactions that are
driven by the same master, hence consecutive stores can be
issued back to back. It is also assumed that the system bus
supports transfer sizes ranging from 1 byte to a complete
cache line in powers of two. All transactions must be
naturally aligned, which restricts the ability to combine
stores.

4.2 Microbenchmarks

Two microbenchmarks are used to assess the
performance of a conditional store buffer. Uncached store
bandwidth is measured using a tight loop of doubleword

stores. The loop is unrolled so that in each iteration a
complete cache line worth of data is stored. The purpose of
this experiment is to put as much pressure as possible on
the system bus and compare the effective bandwidths of
various combining schemes and the CSB. The second
microbenchmark is intended to evaluate the overhead of
locking and unlocking versus an atomic access through the
CSB. The lock-acquire operation is implemented using the
SPARC swap instruction inside a loop body, which is
repeated until the lock has been set successfully. After lock
acquisition, a sequence of two to eight doubleword stores
to uncached accelerated space is executed. A memory
barrier instruction ensures that the lock release operation is
executed only after the last uncached bus transaction has
left the uncached buffer.

4.3 Results

4.3.1 Store Bandwidth

Multiplexed Bus

Figure 3 shows the effective store bandwidth for
various combinations of block sizes, processor to bus
frequency ratios, and bus overheads using an 8-byte wide
multiplexed system bus. Each graph illustrates the number
of bytes transferred per bus cycle (y-axis) vs. the transfer
size (x-axis).   Each group of vertical bars shows results for
the non-combining scheme on the left to full cache line
combining, followed by the conditional store buffer result
on the right. The total amount of data transferred is varied
between 16 bytes (2 doubleword stores) and 1 Kbyte. The
bus is assumed to be completely idle, except for the
uncached data transfers.

The results are intuitive and not particularly surprising.
However, they indicate that important trends in processor
and bus design can penalize uncached bus transactions,
and how much benefit burst transactions have over single-
beat transactions.

In general, the effective bandwidth increases for larger
data transfers because combining in the uncached buffer is
only effective if the buffer is not empty. Initially, the
system interface is idle and the first store instructions can
immediately be forwarded. Only when the buffer begins to
fill up, can new stores be coalesced into existing entries.
Regardless of the combining scheme, the first few
transactions transfer only one or two doublewords each.

Figures 3 (a) to (c) show the impact of the processor to
bus frequency ratio on store bandwidth for a range of
current and probable design points. The result is that,
without any combining, the bandwidth is independent of
the total amount of data transferred. Each store results in a
two-cycle bus transaction, thus the effective bus



6

bandwidth is 4 bytes per bus cycle, which is half of the
peak bandwidth. For small data transfers of 16 bytes,
combining has no effect because the first store leaves the
buffer before the second is issued. Larger data transfers
benefit increasingly from combining, ultimately
approaching the peak bandwidth of one cache line per 5
cycles.

The conditional store buffer clearly has the greatest
advantage over all other schemes for transfer sizes of about

a cache line. On the other hand, transfers that are
significantly smaller than a cache line are penalized by the
unnecessary long burst transactions. This penalty is easily
reduced if multiple burst size transfers are supported by a
particular bus design. The pressure on the uncached buffer
increases with higher processor frequency, leading to
better combining in the beginning of the data stream. The
resulting increase in store bandwidth is relatively
insignificant.

0

2

4

6

8

16 32 64 128 256 512 1k
0

2

4

6

8

16 32 64 128 256 512 1k
0

2

4

6

8

16 32 64 128 256 512 1k

(a) processor/bus frequency: 3 (b) processor/bus frequency: 6 (c) processor/bus frequency: 9

Figure a - c:  Vary: processor/bus frequency
   Fixed: 64 byte block size; 8 byte multiplexed bus, no turnaround cycle

0

2

4

6

8

16 32 64 128 256 512 1k
0

2

4

6

8

16 32 64 128 256 512 1k
0

2

4

6

8

16 32 64 128 256 512 1k

(d) block size: 32 byte (e) block size: 64 byte (f) block size: 128 byte

Figure d - f:  Vary: block size
  Fixed: processor/bus frequency: 6; 8 byte multiplexed bus, no turnaround cycle

0

2

4

6

8

16 32 64 128 256 512 1k
0

2

4

6

8

16 32 64 128 256 512 1k

(h) minimum delay: 4 cycles (i) minimum delay: 8 cycles

0

2

4

6

8

16 32 64 128 256 512 1k

(g) turnaround cycles: 1

Figure g - i:  Vary: bus transaction overhead
   Fixed: processor/bus frequency: 6; 64 byte block size; 8 byte multiplexed bus

conditional store buffercombine 8 doublewords
combine 4 doublewords

combine 2 doublewords
no combining combine 16 doublewords

vertical axis: bytes per bus cycle; horizontal axis: transfer size in bytes

Figure 3: Uncached Store Bandwidth on a Multiplexed Bus

by
te

s 
pe

r 
bu

s 
cy

cl
e

by
te

s 
pe

r 
bu

s 
cy

cl
e

by
te

s 
pe

r 
bu

s 
cy

cl
e



7

The subsequent experiments are based on a processor to
bus frequency ratio of 6. This ratio is considered
representative of near future microprocessors with core
frequencies approaching 1 GHz and bus frequencies at
exceeding 100 MHz. The results in figures 3 (d) to (f) show
the impact of varying the cache line size between 32 bytes
and 128 bytes. For larger cache lines, the relative
performance advantage of the conditional store buffer
increases because the per-transaction overhead is reduced
by the longer burst. Another interesting detail is that for
medium sized transfers, a smaller combining buffer can be
more efficient, due to the alignment restrictions of the bus
(see figures 3 (a) and (f)). Intuitively, it is sometimes better
to issue a smaller transfer early, the remaining stores can
then coalesce with the following instructions to form a
transaction that is larger than otherwise possible. It is also
obvious that increasing the cache line size pushes the
crossover point between the CSB and other schemes
towards larger transfers, because the conditional store
buffer always issues burst transactions.

Figures 3 (g) to (i) show the effect of increasing the bus
overhead. In figure 3 (g) a turnaround cycle is inserted
after every transaction. This may be necessary for certain
bus designs that always require an idle cycle between
transactions, even when those are driven by the same
master. It can also be viewed as an approximation of a
heavily loaded bus with multiple masters, the effective
bandwidth indicates how well a master can utilize its share
of the raw bus bandwidth. For larger transfers, bandwidth
decreases for the non-combining scheme and the CSB
because the turnaround cycle that follows the last
transaction is not included in the bandwidth calculation.
The transfer is considered complete at the end of the last
transaction. For instance, a doubleword transaction takes 2
cycles, two consecutive transactions take 5 cycles, three
transactions take 8 cycles, and so on. This effect
diminishes for large transfers and the effective bandwidth
approaches the peak value. The net effect is that the CSB
bandwidth surpasses all other schemes for even shorter
transfers, relative to buses without a turnaround cycle.

Some buses [9] implement a selective flow control
scheme. For each address transfer, the target
acknowledges the transaction, indicating if it is able to
process the request. The acknowledgment is usually
expected a fixed number of cycles after the address cycle.
This makes deadlock avoidance somewhat easier, since
targets can selectively reject certain transactions while
possibly accepting others. Other targets remain unaffected.
However, it also introduces the possibility that transactions
are reordered in the system interface. Memory transactions
and acknowledgments can be easily pipelined, because
transaction reordering does not create problems in modern
weakly ordered memory models. However, if the system

interface has to maintain strong ordering for uncached
accesses, it can not issue the next uncached store before the
previous one has been positively acknowledged.

Figures 3 (h) and (i) show the effect of such a minimum
delay requirement. A delay of 4 cycles means that the
address cycle of transactions must be 4 cycles apart. It is
evident that only short transactions are affected by this,
while an 8-cycle burst completely overlaps with the
acknowledgment. Burst transfers yield higher bandwidth
for all but the very shortest transfer (Figure 3 (h)). The high
acknowledgment latency of 8 cycles penalizes short
transactions. Although currently unrealistic, future high-
frequency bus designs may well incur a similar penalty.

Split Address/Data Bus

Figure 4 shows results for a split bus with separate
address and data paths.   Examples of such systems are the
Sun UPA used in UltraSPARC based systems, or the
system buses of various PowerPC processors. Commonly,
the data path is wider than in a multiplexed bus, ranging
from 128 to 256 bits. The fact that the data path is wider
than a processor word introduces a different kind of
overhead, namely wasted bus width. For instance, a
doubleword transaction uses only half of the bandwidth of
a 128 bit wide bus.

Figures 4 (a) and (b) show this effect for a 128 bit and a
256 bit wide bus (Note the vertical axis scale difference).
Data cycles can issue back-to-back without a turnaround
cycle. The only overhead in this case is the wasted bus
bandwidth for transfers smaller than the bus width. In
particular, on a 256 bit wide bus, a burst transfer takes only
two cycles, the same number of cycles as two individual
doubleword stores.

Figure 4 (c) shows the impact of a mandatory
turnaround cycle between transactions on a 128 bit wide
bus. The effect is similar to the one found for the
multiplexed bus, but the performance gap between the
non-combining scheme and the CSB is greater, because of
the additional overhead of wasted bus width. Introducing a
minimum delay between transactions has a more dramatic
impact, because transactions of the same size take only
half as many cycles as on a narrower bus. For a minimum
delay of 4, only the CSB can successfully hide the
acknowledgment latency, while a longer delay affects all
transactions. Note that this effect is dramatic only because
transactions and acknowledgments can not be pipelined
for strongly ordered I/O accesses.

Discussion

The bandwidth results presented in this section are not
specific to the CSB design. Rather, they quantify the



8

intuitive importance of burst transfers to achieve high bus
utilization and show the impact of several trends. The
operating frequency of processors increases faster than the
bus frequency, thus putting more pressure on the memory
hierarchy and bus system. This increased frequency ratio
makes uncached combining buffers more effective. Other
trends, like increased bus width and larger cache lines have
the opposite effect of penalizing sub-block transactions.
Selective flow control is an example of how bus systems
are optimized for burst transactions to memory.

The conditional store buffer makes more effective use
of the system bus by generating burst transaction even for
small data transfers, which leads to more predictable
performance of uncached stores.

4.3.2 Atomic I/O Access

Figure 5 compares the number of processor cycles for a
conventional lock-access-unlock sequence under various
combining schemes with the uncached store buffer. Figure
5 (a) illustrates the performance if the lock access hits in
the L1 cache. Two main effects are responsible for the
significant advantage of the CSB. The net overhead of
locking and unlocking is 8 cycles even when the lock
access hits in the L1 cache, and 137 cycles for a miss. The

cache miss latency is 100 cycles, which corresponds to 166
ns on a 600 MHz processor. The lock acquire and release
operation consists of 8 and 3 instructions respectively.
They include setting up the lock address in a register,
initializing the swap destination register and checking the
result of the atomic swap. Memory barrier instructions
separate these operations from the uncached stores.

For the locking scheme without combining, latency
ranges from 28 to 100 cycles for transfers of 2 to 8
doublewords. It increases by 12 cycles for every
doubleword transferred, because the lock can only be
released after the last uncached store has left the uncached
buffer. On the other hand, an access through the
conditional store buffer can be considered complete as
soon as the conditional flush instruction succeeds. The
overhead associated with the conditional flush is 5 cycles.
Latency increases by 1 cycle for each transferred
doubleword. Figure 5 (b) essentially shows the same
effects, but with a much higher locking overhead due to the
cache miss.

In general, combining decreases the latency because of
the reduced number of bus transactions. The bus alignment
restrictions lead to better bus utilization when going from
7 to 8 transactions, thus explaining the decreasing number
of cycles.

16 32 64 128 256 512 1k
0

8

16

24

32

16 32 64 128 256 512 1k

(a) bus width: 16 byte (b) bus width: 32 byte

Figure a - b:  Vary: bus width
  Fixed: processor/bus frequency: 6; 64 byte block size; Split bus, no turnaround cycle

0

4

8

12

16

16 32 64 128 256 512 1k

(d) minimum delay: 4 cycles

Figure c - e:  Vary: bus transaction overhead
  Fixed: processor/bus frequency: 6; 64 byte block size; 16 byte split bus

0

4

8

12

16

16 32 64 128 256 512 1k

(c) turnaround cycles: 1

0

4

8

12

16

16 32 64 128 256 512 1k

(e) minimum delay: 8 cycles

vertical axis: bytes per bus cycle; horizontal axis: transfer size in bytes

Figure 4: Uncached Store Bandwidth on a Split Address/Data Bus

by
te

s 
pe

r 
bu

s 
cy

cl
e

by
te

s 
pe

r 
bu

s 
cy

cl
e

0

8

16

24

32

no combining
combine 2 doublewords
combine 4 doublewords
combine 8 doublewords
conditional store buffer



9

Discussion

The results presented in figure 5 indicate that the
locking overhead is significant, especially for very small
transfers or in the case of a cache miss. The absolute
number of cycles will vary slightly, depending on the
processor microarchitecture and the bus characteristics.
Experiments with a 2-way and 8-way superscalar CPU did
not change the lock overhead at all, because of the short
data and control dependencies. Wider and faster buses lead
to a smaller per-doubleword increase in latency. On the
other hand, the processor to bus frequency ratio and cache
miss penalty tends to increase, thus partially offsetting this
effect. Other synchronization mechanisms, like the load-
linked/store-conditional instruction pair, also affect the
locking overhead. In many implementations, the store-
conditional instruction results in a bus transaction even for
a cache hit, which would further increase the locking
overhead.

5 Qualitative Evaluation

The CSB design combines atomicity of a sequence of
store instructions with high bandwidth to uncached address
space. For a number of scientific applications studied in
[10], the average message size ranges from 19 to 230 bytes.
Other studies support these results for a wider variety of
applications. It is generally accepted that DMA is too
costly for small messages. Instead, NI designs like [3], [10]
and [2] employ programmed I/O for message sizes below
a certain threshold. Network interfaces that explicitly
target fine-grain communication, like DEC Memory
Channel [5] rely entirely on uncached loads and stores for
message transfer.

On the other hand, scalability of a fine-grain parallel
architecture depends mostly on latency, which in turn is

largely determined by the per-message overhead. The CSB
moves the break-even point between PIO and DMA
towards bigger messages, potentially completely
eliminating the need for DMA on the send side for many
applications.

Moreover, the non-blocking synchronization feature
opens new opportunities for the design of user-level
network interfaces. Processes can be allowed to access
device control registers, such as initiating a DMA transfer,
without operating system involvement since atomicity is
provided by the conditional store buffer.

6 Related Work

The conditional store buffer design was motivated by
several existing optimizations for uncached accesses. The
MIPS R10000 introduced an uncached-accelerated page
attribute, which enabled the uncached buffer to detect and
combine uncached stores to subsequent addresses.
However, no guarantee can be made for the resulting bus
transaction. The buffer stops combining when it receives a
store that does not match the current access pattern. It
issues a burst transaction only if an entire cache line could
be combined, otherwise a series of single-beat transfers is
used. This design is limited to strictly sequential access
patterns.

The SPARC V9 architecture introduced block move
instructions as part of VIS [13]. These instructions transfer
an entire cache line between memory and the processor
floating point registers, bypassing the cache hierarchy.
Atomicity can be guaranteed and protection is ensured
since processor registers are saved and restored on a
context switch. However, floating point registers are not
very well suited as a source for general I/O operations,
since they don’t support bit operations and integer
arithmetic. The use of precious processor registers for

0

50

100

150

200

2 3 4 5 6 7 8

(a) lock access hits

Figure a - b:
Processor/bus frequency: 6; Block size: 64 byte; Bus: 8 byte multiplexed, no turnaround cycle

no combining
combine 2 doublewords
combine 4 doublewords
combine 8 doublewords
conditional store buffer

vertical axis: CPU cycles; horizontal axis: transfer size in bytes

250

0

50

100

150

200

2 3 4 5 6 7 8

(b) lock access misses

250

Figure 5: Comparison of Locking and Conditional Store Buffer

pr
oc

es
so

r 
cy

cl
es



10

buffering of I/O operations increases the register pressure
which might have negative performance impacts.

The non-blocking synchronization scheme is very
similar to the transactional memory proposed in [6]. It is a
general hardware mechanism to support lock free atomic
access to shared data structures. However, since the
conditional store buffer accesses only uncached address
space and limits the amount of data to exactly one burst
transaction, it does not require snooping of external
transactions which reduces the hardware cost.

7 Summary

We have presented the design of a simple software
controlled conditional store buffer which makes efficient
use system bus burst transfers to improve I/O performance.
The cost is a minor increase in hardware complexity of the
processor and the design is consistent with current trends
in microprocessor architecture. Several processors have
attempted to combine stores to consecutive addresses to
reduce the number of bus transactions. The CSB design
just takes these optimizations one step further and gives
software complete control over the combining buffer. It
implements a non-blocking synchronization scheme to
ensure atomicity andexactly-once semantics of the
resulting bus transaction. The advantages are higher store
bandwidth even for very small transfer sizes, and a
significant reduction in synchronization costs for I/O
device accesses.  The next step is to evaluate the benefits
of these performance advantages in terms of realistic
applications, since the microbenchmarks used in this study
were designed to maximize the pressure on the I/O
subsystem rather than model application reality.

Acknowledgments

The author would like to thank John Carter and Wilson
Hsieh for their helpful suggestions and comments in
various stages of the research as well as during the
preparation of the paper. Email conversation with Ulrich
Bruening helped to improve the presentation of the
conditional store buffer design. Kevin Van Maren
provided valuable insights into the design of device drivers
and I/O devices. Sally McKee’s comments improved the
final version of this paper.

References

[1] David Banks and Michael Prudence. A High-Performance
Network Architecture for a PA-RISC Workstation.IEEE
Journal on Selected Areas in Communications, Volume 11,
No. 2, February 1993.

[2] Ulrich Bruening and Lambert Schaelicke. Atoll: A High-
Performance Communication Device for Parallel Systems.
In Proceedings of 1997 Conference on Advances in Parallel
and Distributed Computing, pages 228-234, Shanghai, Chi-
na, March 1997.

[3] Al Davis, Mark Swanson and Mike Parker. Efficient Com-
munication Mechanisms for Cluster Based Parallel Comput-
ing. In Proceedings of the First International Workshop,
CANPC'97, pages 1-15, San Antonio, Texas, February 1997.

[4] Digital Semiconductor. Alpha 21164 Microprocessor:
Hardware Reference Manual, April 1995.

[5] Marco Fillo and Richard B. Gillett. Architecture and Imple-
mentation of Memory Channel 2.DEC Technical Journal,
Volume 9, No. 1, January 1997.

[6] M. P. Herlihy and J. E. B. Moss. Transactional Memory: Ar-
chitectural Support for Lock-Free Data Structures. InPro-
ceedings of 20th Annual International Symposium on
Computer Architecture, pages 289-300, May 1993.

[7] Richard P. Martin, Amin M. Vahdat, David E. Culler, Tho-
mas E. Anderson. Effects of Communication Latency, Over-
head, and Bandwidth in a Cluster Architecture. In
Proceedings of the 24th Annual International Symposium on
Computer Architecture, June 1997.

[8] MIPS Technologies.MIPS R10000 Microprocessor User's
Manual, Version 2.0, 1996.

[9] Motorola Inc.PowerPC Microprocessor Family: The Bus
Interface for 32-Bit Microprocessors, 1997.

[10] Shubhendu S. Mukherjee and Mark D. Hill. The Impact of
Data Transfer and Buffering Alternatives on Network Inter-
face Design. InProceedings of the Fourth International
Symposium on High-Performance Computer Architecture
(HPCA-4), pages 207-218, February 1998.

[11] Vijay S. Paj, Parthasarathy Ranganathan and Sarita V. Adve.
RSIM Reference Manual, Version 1.0. Technical Report
9705. Department of Electrical and Computer Engineering,
Rice University. August 1997.

[12] Kevin Skadron and Douglas Clark. Design Issues and
Tradeoffs for Write Buffers. InProceedings of the Third In-
ternational Symposium on High-Performance Computer Ar-
chitecture (HPCA-3), pages 144-155, February, 1997.

[13] SPARC Technology Business.UltraSPARC-1 User’s Man-
ual, Revision 1.0. September 1995.


