Problem / Motivation

The shift from sequential to parallel and distributed computing is of fundamental importance for the advancement of computing practices. Unfortunately, this makes debugging truly challenging, leading to incorrect simulation results.

- Almost all large-scale parallel scientific simulation programs are written using MPI (Message Passing Interface)
- Earthquake Simulations
- Molecular Dynamics
- MPI programs are sophisticated and difficult to verify
- Visualization of verification results is important
- Few integrated graphical debugging and analysis tools exist

Approach / Solution

Of particular importance will be the efficient dynamic verification of such parallel applications. This calls for running actual MPI applications under a formal verification scheduler to exercise all relevant interleavings.

Future Work – Added Integration of Distributed Analyzer of MPI Programs

DAMI is the first dynamic formal analysis tool for MPI programs that guarantees scalable coverage of the space of MPI non-determinism through a decentralized algorithm based on Lamport Clocks.

- Currently working on integration of DAMPI into GEM
- Scales to 1000s of processes
- Fortran support
- Verify locally through GEM with ISP
- Verify at scale on a cluster through GEM with DAMPI

Acknowledgements

We gratefully acknowledge the work done by the creators of ISP, notably Sarvani Vakkalanka, Anh Vo (also the creator of DAMPI), and Michael DeLisi. We also acknowledge the contributions of Sriram Aananthakrishnan who created the Happens-Before Viewer of ISP. Thanks also to Greg Watson of IBM for encouraging us to contribute GEM to Eclipse.

Supported in part by Microsoft, NSF CNS-0509379, CCF-0811429, CCF-0903408. Portions of this material are supported by or based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under its Agreement No. HR0011-07-9-0002.