

Automated unpacking

Malware Analysis Seminar

Meeting 5

Cody Cutler, Anton Burtsev

Code packing

Types of packers

● Traditional
● Shifting decode frame
● Code virtualization

Taxonomy of polymorphism

Syntactic changes

● Change of code's syntactic structure
● Semantics remains unchanged
● Borrows techniques of code obfuscation

● Evade signature based detection of traditional
antivirus software

● Dead code insertion
 push %ebx
 pop %ebx

● Instruction substitution
 mov $0, %eax -> xor %eax, %eax

● Variable renaming & register reassignment
 mov $0, %eax mov $0, %ebx
 mov $1, %ebx mov $1, %ecx
 add %eax, %ebx add %ebx, %ecx
 push %ebx push %ecx
 call $0x80403020 call $0x80403020

● Code reordering
● Change syntactic order of the code
● Semantic execution path remains unchanged

● Branch obfuscation
● Hide the target of a branch
● Structured Exception Handling
● Indirect branching

 mov $0x80402030, %eax
 jump *%eax

● Branch functions

● Branch inversion
 jc 0x80403020 -> cmc #complement curry flag
 jnc $0x804030

● Branch flipping
 jz 0x80403020 -> jnz L
 jmp $0x804030
 L:

● Opaque predicate insertion
● Always evaluates to the same result
● However it's hard to know this result statically

– Used for both control flow, and data values
 mov $1, %eax
 jnz $0x80403020

Automated unpacking:
detecting packed code

Detection

● Signature-based detection
● PEiD

● Entropy analysis [Bintropy]
● Statistical measure of the amount of information in

a block of data
● Packed and encrypted code has high entropy
● Limitations

– Packers can lower the entropy intentionally
– Entropy analysis can miss simple obfuscation

Detection

● Behavior based
● Monitor execution
● Detect if previously modified memory is executed
● Limitations

– Can't distinguish self-modified and packed code

Program feature classification

● Program features
● Number of standard and non-standard sections
● Number of executable sections
● Number of readable/writeable/executable sections
● Number of entries in the import table

● Some static program features remain invariant
● Byte and instruction level features perform poorly
● But don't require undecidable disassembly
● Code normalization might help

– But it's not sound

Automated unpacking:
static approaches

Code normalization

● The goal is to undo obfuscation
● Code reordering

● Reliable for unconditional jumps
● “In a normalized CFG, each CFG node with at least

one unconditional-jump immediate predecessor
also has exactly one incoming fall-through edge”

● Semantic nops
● Abstract interpretation

Control flow and call graphs

● More invariant
● Fail to reconstruct precise CFG in face of...

● Opaque predicates (misleading branch targets)
● Detect opaque predicates

– Remove them with abstract interpretation

● Pointers and indirection
● Some models ignore indirect branches all together

– Accept a less accurate representation

● Alias analysis (Value-Set analysis)
– Tries to detect all possible values for the pointers

●

Feature classification

● Data-flow and dependence analysis
● Hard in the presence of pointers

● API calls
● Fail in face of stolen bytes which obscure API calls

Automated unpacking:
dynamic approaches

PolyUnpack

● Generate static code view
● Identify generated instructions

● Compare at run-time if instruction is in the static
view, if not, it was dynamically generated

// Step 1: Static Analysis

// Disassemble P to identify code and data. Partition
// blocks of code separated by non-instruction data into
// sequences of instructions i0, ..., in. These sequences
// form the set I (the static code view). I will be
// repeatedly queried in the dynamic analysis step to
// detect if P is executing unpacked code.

// Step 2: Dynamic Analysis

// Execute P one instruction at a time. Pause execution
// after each instruction and acquire the current
// instruction sequence by performing in-memory
// disassembly starting at the current value of the pc
// until non-instruction data is found. Compare the
// current instruction sequence with each instruction
// sequence in the set I. If the current instruction
// sequence is not a subsequence of any member of I,
// then it did not exist in the static code view of P
// (i.e., it is unpacked code being executed).

PolyUnpack: implementation

● Command-line windows tool
● Software and hardware breakpoints to implement

single-stepping
● www.ollydbg.de/srcdescr.htm library for

disassembling
● OllyDump for dumping

● Careful handling of DLL code
● Also linked dynamically

http://www.ollydbg.de/srcdescr.htm

Renovo

● Part of BitBlaze
● Implemented on top of TEMU, extension of QEMU

● Shadow memory
● Tracks clean (unmodified), and dirty (modified)

memory
● After a block in a dirty memory is executed, Renovo

dumps dirty memory, and marks it as clean again

● Tracks processes with CR3

Saffron

● Same idea but uses binary instrumentation to
control the program
● Pin

● Later implementation relies on the Windows
page-fault handler modification
● Tracks memory modifications

Criticism

● Simplistic models
● Heavyweight
● A typical AV solution uses a combination of

● x86 emulator
● application level OS emulation

Automated unpacking:
dealing with code virtualization

Code virtualization

● Themida
● Translates x86 code into another language

– RISC-64, RISC-128, CISC, CISC-2
● Randomizes instruction encoding
● Interprets new language

● VMProtect
● Stack based RISC

Static approach

● Compiler front-end which takes a v-code
language

● Recompile in x86
● Observations

● v-code language is derived from a family of
templates

● High similarity

People do that

● Reverse engineer the VM
● With the help of dynamic tools

● Implement a disassembler
● IDA Pro plugin 5K LOC of C++

● Disassemble byte code and convert into IR
● Apply compiler optimizations
● Generate x86 code

Rotalume

● QEMU based dynamic analyzer
● Record a trace of execution
● Identify the virtual program counter (VPC)

– Abstract variable binding
– Associate each memory fetch with an index variable
– Deal with x86

● Identify v-code regions
● Identify syntax and semantics of v-code operations

– CFG and taint analysis

Acknowledgements

● Survey of Unpacking Malware. Silvio Cesare.
● Fast Automated Unpacking and Classification

of Malware. Silvio Cesare. MS Thesis. 2010.
● Rotalume: A Tool for Automatic Reverse

Engineering of Malware Emulators. Monirul
Sharif, Andrea Lanzi, Jonathon Giffin, Wenke
Lee.

● Unpacking virtualization obfuscators. Rolf
Rolles. In WOOT'09.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

