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Abstract
Hypervisors provide strong isolation and can be lever-
aged to disaggregate large software stack of a traditional,
monolithic system. Disaggregation can be achieved by
running individual applications and kernel components
in separate VMs. Existing hypervisors, however, do not
offer a fine grained access control mechanism. Without
such mechanism, individual VMs still run in one of two
extremes—complete isolation or excessive authority.

This project extends Xen with the capability ac-
cess control model—a mechanism for fine grained, dy-
namic management of rights. Together with strong iso-
lation, capabilities can be used to create least-privilege
services—an environment in which individual applica-
tions have minimal rights, that are required to perform
their tasks.

We discuss the design and implementation of a capa-
bility access framework for Xen. We also demonstrate
examples of least-privilege services. Overall, we gained
valuable insights for designing a secure system using an
industry standard virtualization platform.

1. Introduction
Many of todays modern computer security problems
come from the fact that traditional operating systems
are monolithic. A compromise in one of the components
of the OS makes it easy to gain control of the entire
system.

Virtualization has become a de-facto standard in dat-
acenter and web hosting environments. It is also gaining
popularity as a mechanism for constructing novel exe-
cution environments on desktop machines [13]. Virtu-
alization can isolate individual applications in separate
VMs [3, 15]. But isolation alone cannot guarantee se-
curity. In addition to isolation, a secure system needs a
flexible way to manage privileges available to individ-

ual VMs. Security models that are implemented with
hypervisors do not offer flexible policies or fine grained
access control.

Xen is a full-feature, open-source hypervisor, which
provides support for both para-virtualization and hardware-
assisted virtualization [1]. It is adopted in the industry
as a default component of the cloud datacenter stack [6].
Xen provides mechanisms to run VMs in isolation,
which can further be used to disaggregate individual ap-
plications or services of an OS and effectively sandbox
their execution.

Capabilities offer flexible and fine grained access
control mechanism and have been used extensively in
many research operating systems [7, 9, 17]. Capabilities
have been shown to work well for dynamic privilege
management [10]. With capabilities, it is possible to
construct least privilege services—an environment in
which individual applications have minimal rights, that
are required to perform their tasks. By augmenting Xen
with capabilities it is possible to achieve isolation and
fine grained access control.

Though implementation of capabilities is well under-
stood in the object oriented microkernels [7], it is not
clear how we can adopt the same model in a virtualized
environment. Microkernel systems are designed from
scratch to support capability model where everything in
the system is treated as an object. Microkernels provide
abstractions to operate on these objects. Xen hypervisor
provides a more traditional hardware-centric abstrac-
tion such as device drivers, DMA, interrupts etc. It is
challenging to map capability model which relies on
object-centric abstractions on a system that provides
hardware-centric model. In order to map the capability
model on such a hardware-centric design, it would re-
quire redesigning many of the fundamental abstractions
in the system. This will require making changes that can
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affect many parts of the system including the application
layer and therefore implies lots of code changes.

Our contributions are the following:

• A capability framework to do fine-grained access
control in Xen.

• Examples for constructing more secure services us-
ing capability framework.

2. Capabilities
2.1 Overview
Capability [5] is a special token that uniquely identifies
an object (resource) and allows the application to per-
form certain operations on that object. Any application
that possesses a capability can interact with the object
in ways permitted by the capability. Those operations
might include reading and writing data associated with
the object, and executing a function of the object.

In a classic capability object model, capabilities are
implemented as references to system objects. Every
resource in such a system is an object, e.g., a memory
page, an IPC entry point, a hardware device [7, 17] etc.
Applications invoke capabilities to perform operations
allowed on that object. The capability invocation is the
only IPC mechanism in the system.

Hypervisors do not offer objects as a fundamental
abstraction. Neither do hypervisors have a unified IPC
mechanism which can provide a meaningful interposi-
tion interface for enforcing system wide access control.

In a virtualized system, most system resources still
run in the unmodified operating system kernels and ap-
plications which implement them. Some objects, like
hypercall invocation points, memory pages, etc., are
implemented and can be protected by the hypervisor.
But the high level objects could be anything the appli-
cation chooses to protect such as a file, or a record in
a database. The hypervisor itself cannot make sense of
the high level objects. Hence a capability access check
cannot be enforced in the hypervisor.

A pragmatic approach to implement a capability ac-
cess control model on a hypervisor is to separate en-
forcement of capability rules and access checks. Ca-
pability rules—integrity of capabilities, exchange of
capabilities—are enforced in the hypervisor, but the ac-
cess checks are made by a high level code. This allows
us to extend the capability model into traditional ap-
plications and kernel components with only minimal
changes to their code.

2.2 Xen-Cap’s view of capabilities
In our system, a capability is a record in a hypervisor
protected data structure. Please refer to Figure 1 for
more details. We call this data structure the capability
address space, or the CSpace. VMs are subjects in our
model, i.e, each VM has a private CSpace, and all the
code inside it has the same rights.

Each capability is identified by a system-wide unique
64-bit name. The name by itself does not provide access
to an object. To obtain an access, the capability with this
name must be added to the CSpace of the VM.

In order to guarantee authenticity properties of ca-
pabilities, i.e. anyone with capability is authenticated
to use a resource, we need to ensure capability names
are unique. We create capabilities using the multiply-
with-carry (MWC) random number generator invented
by Marsaglia [11, 12]. We chose this method for two
reasons:

• It is fast since it involves computer integer arithmetic.
• It has extremely large periods ranging from around

260 to 22000000.

Consider a period of 260, if the system allocates a
capability every 300ns then it would take approximately
10960.4 years for an overflow to occur.

We also create capabilities at runtime and do not use
a persistence store. Using persistance store to remember
capabilities would require securing the persistence store.
We would also need to address file system consistency
issues. Therefore, we did not have time to consider such
a design in this work.

As we mentioned earlier, capabilities by themselves
do not provide any security guarantees in our system.
To enforce access control, capabilities are bound to high
level objects, by the code which manages these objects,
e.g., files in a file system, internet connections in the net-
work stack, memory pages, and even virtual machines.
The code which manages the objects is responsible for
enforcing the access control checks. Hypervisor protects
its own objects such as hypercalls, memory pages, IPC
end points, etc. Hypervisor ensures VM-level protection.
However, if higher level objects need to be protected,
we extend the TCB into the code that implements them.

The hypervisor however makes sure that VMs cannot
forge capabilities and can only acquire them through
an authorized grant hypercall. This simplifies the work
of the high level code—to check if access is permitted,
the high level code can just invoke the hypervisor check
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Figure 1. Xen-Cap Capabilities

call. If the capability is present in the capability address
space of the virtual machine which tries to perform the
access, then check returns OK and the high level code
can permit access.

3. Xen-Cap Interface
The main components of the Xen-Cap capability inter-
face are three hypercalls - cap_create, cap_grant

and cap_check.1 The only way to interact with capa-
bilities are through these hypercalls. We’ll explain how
capabilities are initialized in Section 5.3. Now we’ll
describe how VMs can interact with capabilities.

3.1 Flow of capabilities
• Creating and binding capabilities: A capability is cre-

ated with the cap_create hypercall. cap_create
creates a capability in the calling VM’s CSpace and
returns the name of the capability to the requesting
application. The application then binds the capabil-
ity with its object. Binding means application now
knows which capability to check on access to a par-
ticular object. The application decides how to store
this information.

• Distribution of Capabilities: Application can grant
capabilities to other VMs by using cap_grant hy-
percall. The grant will succeed only if VM has a
capability with that name in its CSpace, and if VM
has the right to grant it according to the rules of the
model.

Distribution of capabilities involves another interest-
ing problem. Initially only the application which cre-

1 We did not have time to implement cap_revoke which revokes an
access to a resource. This can be useful to cut-off communication
between entities and also create isolated islands of services. We did
not have time to look into take-grant model [10] which deals with
issues of granting capabilities to many entities.

ated a capability knows about its binding. If we want
to distribute rights to this object, we need some query-
ing mechanism for applications to get the names of
the capabilities bound to these objects2.

For example, consider a shared file system where
we want to allow access to specific files. Since
only the file system knows which capabilities are
bound to which files, we need a way to query ca-
pability names to grant them to specific applica-
tions. In order to query capability names, we intro-
duce a mechanism called as get_cap_names API.
get_cap_names takes a high level object, i.e, file
name, and asks the system which manages that ob-
ject to return the name of the capability bound to that
object. Then the granting VM can perform the grant
operation, but of course only if it has a corresponding
capability in its CSpace.

• Checking Capabilities: Any application process in
our model will permit access only if the requester
has a valid capability. This is achieved by using the
cap_check hypercall. The check operation takes a
domain identifier of the VM which tries to perform
the access and a capability name. It then performs
a lookup on the CSpace data structure of the VM
which requests the access. If it finds the capability in
CSpace, it returns OK.

3.2 Xen-Cap interface—Libxl and Linux Kernel
Xen-Cap interface for capabilities is available from
two levels in the guest systems—user level apps, and
guest kernel. At the user level, applications can use the
xen specific library which in turn invokes the cap_*

hypercalls.

2 The grant rule checks are not not supported yet—we always grant
right now
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Figure 2. Xen-Cap Architecture

To support capabilities in guest kernel, we introduce
our capability hypercalls inside the Linux guest kernel.
It follows the same semantics as in Xen. This helped us
patch the frontend drivers in Linux guest kernel. The
frontend driver code can be found in the Linux source
code under drivers/block/ and drivers/net/. We have
patched talk_to_netback() for network frontend
driver via xenbus_cap_op(). xenbus_cap_op() cre-
ates the necessary capabilities via cap_create hyper-
call and does the grant. We also had to patch connect()
routine in (drivers/block/xen-blkback/xenbus.c) which
handles virtual disk backend from guest via
xenbus_cap_op().

3.3 Example of Sandboxing a PDF reader
In Figure 2, the capability is shown as a 64-bit string and
it is bound to the object Foo.pdf by the file system code
in the File System VM. Capabilities are protected by the
hypervisor in a fast lookup data structure called CSpace.
VMs can access capabilities only through well-defined
set of capability hypercalls - cap_create, cap_grant
and cap_check. The Application VM hosts a PDF
Reader and is created with capabilities to access Foo.pdf.
Application VM uses the existing Xen API’s to read
the PDF file. The Application VM uses the capability
interface to protect those files. Any request to access
Foo.pdf results in a capability check on the Application
VM’s CSpace.

Capabilities flow according to cap_* API’s and this
defines the life cycle of the capabilities in the model we
have implemented so far.

3.4 CSpace Organization
We create capabilities in the hypervisor protected mem-
ory and hold them in a fast lookup data structure—
CSpace. Designing a fast lookup data structure for capa-
bilities is a research problem in itself. As we mentioned
before, in a capability system, access to any resource—
every memory page, files, PCI devices in the system is
via capability objects. The problem is to design a effi-
cient data structure that can easily scale to billions or
more objects in the system. Consider a system with 4GB
of physical memory and 4kB page size. To protect every
memory page on this system, we would need 1048576
capabilities.

Therefore, a practical way to adopt capabilities on
systems such as Xen is to design auxiliary data struc-
tures to manage capabilities. In our design, we use an
array data structure as CSpace for simplicity. This can
be easily replaced with other fast lookup data structures
such as a hash table. In order to scale capabilities to a
large number, we could think of designing some kind of
a sparse tree like data structure where the inner nodes
serve to translate the address and leaves are either data or
capability pages similar to EROS operating system [17].

Our current implementation, which serves as a pro-
totype, relies on arrays to make things simple and we
plan to replace this with other high lookup structure in
future.

4. Xen Overview
Xen is a baremetal hypervisor which provides platform
to run multiple operating systems. It provides a hypervi-
sor, a special virtual machine that helps manage other
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guest VMs (Domain 0) and infrastructure for device
discovery, virtual machine creation etc. Please refer to
Figure 3 for more details.

A running instance of a virtual machine is called
a domain or guest. A special domain, called Domain
0 contains the drivers for all the devices in the system.
Domain 0 also contains a control stack to manage virtual
machine creation, destruction, and configuration.

The major components of Xen are as follows:

• The Xen hypervisor is a minimal microkernel that
runs directly on hardware and is responsible of man-
aging physical CPU, memory, and interrupts. Hyper-
visor provides a hardware-like interface sufficient for
running traditional operating systems inside isolated
virtual containers.

• The Control Domain or Domain 0 is a specialized
virtual machine responsible for managing other guest
domains. Domain 0 has direct access to physical
hardware and typically hosts backend device drivers.
It is the first VM started by the system.

• Toolstack and Console: Domain 0 contains tools to
manage virtual machine creation, destruction , and
configuration. The toolstack is either driven by a
command line console, by a graphical interface or by
OpenStack or CloudStack.

• XenStore is a light-weight database that stores VM
configuration details. It exposes a file system like
interface to write and read from the database. It is
also important for the split-device driver architecture
that Xen implements to support para-virtualization
of device drivers.

The Xen hypvervisor implements a small subset of
traditional operating system abstractions: virtual ma-
chine scheduling, page-level memory management and
address spaces, memory sharing across domains, and
interrupt-like notification channels. In contrast to many
microkernels, the Xen hypervisor does not implement
any IPC mechanism besides a single-bit, interrupt like
notification channel. Guest virtual machines are free to
implement any IPC mechanism on top of two primitives:
the shared memory mechanisms, and the event channels.

A typical guest virtual machine, called Domain U,
starts with four virtual devices: console, Xenstore, disk,
and network. A guest virtual machine does not have
access to real physical devices. Instead, Xen provides
the guest with a notion of a virtual device, which is

implemented with two components - a backend and
frontend split device. The backend and frontend devices
run in the Domain 0, and the guest virtual machines,
and work as a proxy-stub pair, which provides access
to a physical device running inside a privileged device
driver domain.

The frontend device driver is the normal device driver
that comes with the guest operating system. Instead of
talking to the real device, frontend driver talks to the
backend device driver.

The backend device driver typically in Domain 0,
routes all the requests from the frontend device driver
to the actual physical device.

The split-device driver model relies on a shared mem-
ory page and event channel communication primitives
to establish a high-throughput cross virtual machine
communication mechanism.

5. Securing Services
A Xen VM interacts with other VMs and the hypervisor
through the following interfaces:

• Hypercalls are well-defined and limited functions to
access hypervisor services

• XenStore is a system-wide configuration database
with a publish-subscribe interface

• Event-channel and shared memory are two inter-
VM communication mechanisms

Xen comes with the xl toolstack which provides
mechanisms to create, destroy and configure guest
virtual machines. Xen-Cap interfaces with xl toolstack
to grant capabilities to guest VMs during their creation.

5.1 Xen objects
Xen objects are hypervisor-level objects, i.e. hypercall
interface, event-channels, PCI devices, shared memory.
In order to mediate access to Xen objects, we use XSM
framework. Similar to FLASK [19] and SELinux [18],
XSM [4] is a generalized security framework for Xen.
XSM has security hook functions throughout the hy-
pervisor. XSM provides simple ways to override the
default hook functions with one of our own. This allows
plugging in different security models without having
to re-write a lot of code. The security hooks mediate
access to Xen level objects such as hypercalls, event
channels, memory pages, etc. When the hook funtion is
triggered, control is transferred to the Xen-Cap interface,
i.e. cap_* interface.
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Figure 3. Xen Architecture

5.1.1 Hypercall Interface
The guest virtual machines access Xen services by using
the hypercall interface. Hypercalls are implemented like
system calls in a traditional operating system. Hyper-
calls are well-defined and limited in number. In Xen, the
hypercalls gives virtual machines access to use event
channels, map pages, grant page access to other VM’s,
send interrupts, reserve memory, etc. Securing hyper-
calls is important in minimizing authority of a process.
By limiting the hypercalls allowed for a VM, we can
effectively isolate the system resource that VMs can
access.

Creating and binding capabilities: We create capa-
bilities for every hypercall in Xen. For binding capabili-
ties, we use a shared memory page (more about this in
Section 5.2).

Distribution of capabilities: The VM config file has
an additional parameter we introduced cap_hypercalls.
It includes the names of all the hypercalls that the VM is
allowed to invoke. During the creation of VMs, we parse
this parameter and grant the capabilities for hypercalls
listed.

Checking capabilities Every hypercall invocation
is intercepted via XSM and cap_check is invoked. If
cap_check returns OK, we allow the hypercall, other-
wise the hypercall fails.

5.1.2 Event Channels
Unlike traditional microkernels, Xen does not imple-
ment a high-level IPC mechanism. Instead, the Xen in-
tervirtual machine communication is built on top of two

simple primitives: shared memory 3, and interrupt-like
event channels.

Event channels are used as a signaling mechanism in
Xen. An event notification is equivalent to a hardware
interrupt.

Securing event channels with capabilities allows us to
restrict the communication channels available to VMs.
We can selectively allow specific VMs to communicate.
For example, we allow a PDF Application VM to only
communicate with the File System VM but not others.

Creating and binding capabilities: We create a
capability for every VM to establish event channel
communication with other VMs. In order to establish
event channels with other VMs, there is a exchange
of capabilities between the two VMs. In order to bind
the capability, we use the VM structure in the Xen
hypervisor. We introduce a new hypervisor level object
in the domain structure called est_evtchn. We create a
capability with cap_create and bind the capability to
the VM structure, i.e the est_evtchn object. Any VM
that wants to communicate with another VM must have
est_evtchn capability. Since Domain 0 is booted first,
we create a est_evtchn capability and bind it at boot
time. For other guest VMs, we create est_evtchn only
if its config file specifies it.

Distribution of est_evtchn capability: In order to
grant capabilities for event channels, we introduce a new
parameter to the VM config file called cap_evtchn. It
is a list of domain id’s for which we grant est_evtchn
capability. During VM creation, the libxl code parses the

3 We did not have time to work on shared memory in this work
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config file and grants est_evtchn capability to every
domain listed in the config file.

Checking capabilities: On every event channel oper-
ation such as alloc_channel(), bind_interdomain(),
evtchn_send(), etc., XSM intercepts these calls and
transfers control to Xen-Cap interface. Then, we in-
voke a cap_check to verify if the domain requesting
event channel operation has est_evtchn capability in
its CSpace. If the check returns OK, then the VMs are
allowed to use event channels.

5.2 Boot protocol
The Xen hypervisor grants capabilities to all the
hypervisor-level objects to the first booting domain. In a
default Xen setup, Domain 0 which contains all the tools
and backend device drivers, boots first and receives capa-
bilities on all the hypervisor-level objects. We therefore
grant capabilities required to access hypervisor-level
objects.

During system boot, Xen discovers and creates ca-
pabilities for resources such as PCI devices, memory
page table, device drivers, etc. In the later stages of boot,
Domain 0 is created. XSM intercepts domain creation
function and allows Xen-Cap to allocate memory for
CSpace. Once the CSpace for Domain 0 is allocated, hy-
pervisor queries capability names for all the hypervisor-
level objects such as hypercalls, PCI devices, memory
pages, etc., and grants them to Domain 0.

Next, we need the get_caps_name interface to
query capabilities bound to these hypervisor-level ob-
jects. We implement this as a shared memory page
called BOOT_CAP_INFO during boot phase. Once
the capabilities are created for the hypervisor-level
objects discovered during boot, we store them in
BOOT_CAP_INFO memory page.

5.3 XenStore
5.3.1 Overview
Xen store is a light-weight key-value store. It mainly
has configuration information of each virtual machine.
XenStore aims to simplify development of additional
drivers by providing higher level abstractions like read,
write, list and so on. XenStore offers a hierarchical
namespace for keys which gives users the ability to
group similar keys together under a single directory.
Every key-value pair is also known as a node internally.

XenStore has a particular format for entries and they
are grouped under particular directories. There are 3
paths:

• /vm - This holds information related to VM specific
configuration. Number of processors, typer of kernel,
boot parameters etc.

• /local/domain - This holds information about various
device drivers, memory stats, state of VM etc.

• /tools - This holds information related to various
tools.

XenStore provides high-level semantics which look
like this,

write('/local/domain/4/NFS/1', '/file1')

write('/tool/guest/foo', 'xs')

where the user provides the key-value pair. Note that
internally, node names are key names. Please refer to
Figure 4 for more details.

5.3.2 XenStore’s default permission model
XenStore has a notion of security for nodes which is
associated with an access control list of VM id’s that
are allowed to read/write nodes or do both.

set_perms('/tool/mytool', { 'dom' : 0,

'read' : True,

'write' : True,

'dom' : 1,

'read' : True,

'write' : False})

The first <domain id,permission> is the owner of the
node and the permissions on the first pair are the default
permissions for any of the domain id’s not specified
in the list. Owner domain has both read/write permis-
sions by default. The other pairs that follow have the
permissions that are specified.

Generally, each domain makes entries under /local/domain/-
<domain-id>/. Guest domains grant permissions to Do-
main 0. This is because Domain 0 needs to know the
state of the guest domains. More important reason is
that backend drivers are typically hosted in Domain 0
and they need to communicate with the frontend drivers
that come with the guest.

5.3.3 XenStore and split-device driver model
XenStore provides a mechanism for the initial hand-
shake process between frontend and backend drivers.
When guest boots up, libxl code initializes the entries
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for frontend virtual disk driver, virtual network driver,
console etc., depending on the specification provided
through config file. Backend drivers put a watch on
these nodes prior to their creation. Watch is a notifica-
tion mechanism provided by XenStore. Any updates to
these nodes trigger the watch callback function on the
virtual machine that put a watch. Once the guest fron-
tend entries are written, backend is notified and both of
them change the state accordingly.

5.3.4 Capabilities for XenStore
Creating and binding capabilities: The first thing we
needed was to find a way to bind capabilities to each
node in XenStore. XenStore does not have a general se-
curity framework similar to XSM or SELinux. We intro-
duce capabilities straight to the XenStore code, when the
nodes are created in XenStore in construct_node()

via cap_create. The capability is bound to the nodes
(inside the node struct) and also stored in Domain 0’s
CSpace.

Mapping XenStore permissions to Xen-Cap capa-
bilities: We needed to map the permission model used
by XenStore to our capability model. We create a read
capability and a write capability for each node. We take
care to grant the least amount of privileges necessary for
the correct functionality of existing tools. We grant both
read/write capability to owner domains. We converted
the existing XenStore permission model by introducing
our routine xs_strings_to_caps(). This understands
the semantics of XenStore permissions and does the nec-
essary capability creation and grants the same. XenStore
keeps track of the creation of new guest VMs using its
own domain structure. We maintain a flag in this struc-
ture to indicate if the domain is in capability mode. This
takes care of VM’s that are not in capability mode and
can can fall back to the default XenStore permission
model.

Distribution of capabilities: In the default XenStore
permission model, when a new node is created, it inher-
its the permissions from its parent node. We felt that
this kind of permission inheritance limits our reasoning
about authority. Therefore, we disable inheritance and
change all xl tools to explicitly grant capabilities to each
node in XenStore. We introduce xs_get_caps(path)
API to query the capabilities needed to access a partic-
ular node. With this in place, we can explicitly grant
capabilities rather than follow an inheritance model. We

had to patch a number of places in libxl code path where
we call xs_get_caps() and then do cap_grant.

Checking capabilities: Whenever a XenStore node
is created, we invoke cap_check on the parent node.
This ensures child node is created only if the parent node
has write capability on it. By default, reading the value
of the node in XenStore requires the read capability.
XenStore communication abstractions dictate if we need
to check read or write capability. For example, looking
up a value of a particular node invokes a cap_check for
the read capability on that particular node.

5.4 Network File System
5.4.1 Overview
File systems have a large code base and represents one
of the major subsystems in the OS. Users rely on file
system to share files and directories for collaborative
work. Sharing often brings the question of what to share
with whom. In other words, we need a way to secure
the file system even when there is collaboration. The
default Linux ACL access control model is inflexible to
implement the principle of least privilege, e.g. share
a single file with another VM like our PDF reader
example. Capabilities provide a flexible and simple
mechanism to construct controlled communication flow
without requiring complex policies.

In order to isolate the file system, we run the file
system in a separate VM and export the directories to
application VMs. One of the best ways to export a file
system to another VM is via Network File System (NFS).
NFS is a distributed file system protocol used to export
file systems over a network connection. It offers the
most simple way to share files over network. Please
refer to Figure 5 for more details.

5.4.2 Capabilities for NFS
Creating and binding capabilities: In order to bind
capabilities to files, we needed some metadata attached
to the files to store capability names bound to each file.
One option we considered was to bind capabilities inside
file’s inode. Though this seemed like a good option,
we did not want to deal with different filesystems and
their representation of inodes. Hence, we introduced
our own metadata for binding capabilities to files. We
needed something unique about a file that could serve
as a binding between the file and the capability. The
inode number of a file seemed to be a viable option.
The inode number is unique during the lifetime of a file.
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Figure 4. XSM under Xen-Cap. Every node in XSM is binded with a capability. Access to these nodes will result in
checking capabilities.

We created a mapping for inode number of a file to the
capability and maintain this mapping in a hash table.
The key to this hash table is the inode number. We use
a hash table implementation called uthash developed
by Hanson [20]. It is a very flexible implementation
that allows any C structure to be a part of the table. We
had to make few changes to it for using it in our kernel
modules.

Distribution of capabilities: To grant capabilities
for exported directories and files, we explicitly mention
their full path names in the VM config file. For each
of these files, we grant the capability to the guest VMs.
See more details in section 5.4.3.

Checking capabilties: One issue here is that NFS
exports files to client VMs and the only way we can
grant access to files is by verifying client VMs capa-
bilities. But our capability interface works with virtual
machine as its subject. Hence, we needed a way to map
the client VM’s IP address to it domain id.

To resolve VFS request to domain ids, we maintain
IP address to domain id mapping in a hash table. Once
a NFS request for a file comes from the client VM, we
can track the client ip address. And then we use the
mapping table to get its domain id and we can invoke
cap_check on the client VM. Once the client has the
required capability, we grant access to the file. This is
the overall picture of how things flow for file system in
our capability model.

5.4.3 Implementation details
NFS server domain: We modify the config file to
enable exporting files from the VM that acts as the NFS

server. We call this config parameter cap_files. The
NFS server lists the files that it wants to export to the
guest VMs through cap_files.

cap_files = "/files/foo /files/bar"

The guest VMs specify the NFS server VM’s id along
with the files it needs to access.

cap_files =

"sharedfs backend:/files/foo,/files/bar"

Once we are in the process of creating the VM,
libxl routine initiate_domain_create() invokes
libxl_domain_setcapfiles(). This routine parses
the cap_files from the config file and iterates through
the list of files and writes them in XenStore un-
der NFS server VMs directory. Specifically, under
/local/domain/<NFS server>/NFS/backend/. As
soon as these entries are made in XenStore, a watch
is fired that starts the xen-cap-nfs module in the NFS
server domain.

The xen-cap-nfs module reads the list of files to
be exported from XenStore. For each of the file, we
convert the file pathname into inode numbers. Once the
conversion succeeds we invoke cap_create for each
file and add the capability name and the inode number
in the hash table. This completes the binding process
for NFS sever domain.

Once the NFS server domain comes up, we rely on
the Linux initialization script (rc.local) to indicate that
the file system is up and running. This is because the
routine kern_path() has to convert the file pathnames
in the NFS server domain to their inode numbers.
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Figure 5. NFS under Xen-Cap. NFS server VM exports a part of the file system to client VMs. The client VM is
created with capabilities to only a part of the file system. Once client tries to access files from the server, capability
checks are made on the incoming request and access is granted.

The initialization script invokes the xen-cap-nfs mod-
ule which starts the process of creating capabilities and
binding them to file inode numbers. The module goes
through all the files that needs to be exported, converts
them to their inode numbers and creates capabilities and
adds them to the hash table.

NFS client domain: The libxl code while creating
the NFS client domain, write its IP address and domain
id to XenStore. This will later help in converting the
NFS client request to their domain id. We maintain a
mapping of the NFS client IP address to its domain id
in a hash table.

The libxl code parses the cap_files parameter from
the config file. It iterates through the domain id:<file
pathname> list, queries the capability names for each
file and grants the same.

Once the NFS client domain comes up, it mounts
the exported file system from NFS server domain. The
client sends NFS file requests and the NFS server first
determines whether it has a mapping for the incoming
client request by looking up its IP address from the hash
table. If a mapping is found, we get the domain id of the
client VM and then the server looks up the capability
for the requested file name by its inode number. After
fetching the capability, server invokes cap_check on

the client VM. If it succeeds then access to file is granted
to the client.

5.5 Xen-Cap changes to VM config file
We made several changes to Xen’s VM config file. We
needed some way to specify hypercalls allowed to a par-
ticular VM. Hence, we introduced the cap_hypercalls
parameter, which is a list of hypercall names allowed
for a particular VM. Please refer to Figure 6 for
more details. We introduced a new routine called
libxl_domain_setcapfiles() that parses the cap_hypercall
list and grants capabilities to these hypercalls. We have
to grant capabilities to the VM early during the boot
process otherwise the VM creation will fail. We have
complete control over a VM through config file and
once we make sure config files can only be edited by
the creator of the VM, we can be confident that we have
secured the VM.

We also added the cap_files parameter to config
file which lists the directories and files that is shared by
the NFS server VM. We have distinguished the server
and client here. The VM which exports the files has a
particular format. The client VM which accesses the
files also lists the server domain names and the files it
wants to access from them.
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#

# XEN-CAP GUEST CONFIG FILE (SERVES AS BACKEND FOR VIF DRIVER)

#

# This config file has additional parameters to support Xen-Cap

# The additional parameters are cap_files, cap_hypercalls, cap_evtchn

# cap_hypercalls - List of hypercalls allowed for this VM

# cap_files - List of file pathnames that are being exported to other domains

# cap_evtchn - List of domain id's which can establish event channel communication

kernel = "/boot/vmlinuz-3.7.5+"

ramdisk = "/boot/initrd.img-3.2.16emulab1"

memory = 192

name = "backend"

blkif = "yes"

netif = "yes"

vif = ['ip=155.98.36.197']

disk = ['phy:/dev/loop0,xvda1,w']

root = "/dev/xvda1"

extra = 'xen-cap-lsm=y security=xencap earlyprintk=xen console=hvc0'

cap_hypercalls = "memory_pin_page getdomaininfo setvcpucontext pausedomain

unpausedomain resumedomain max_vcpus destroydomain vcpuaffinity scheduler

getvcpucontext getvcpuinfo domain_settime set_target domctl set_virq_handler

setdomainmaxmem setdomainhandle grant_mapref grant_unmapref grant_setup grant_transfer

grant_copy grant_query_size memory_adjust_reservation memory_stat_reservation

console_io profile schedop_shutdown evtchn_unbound evtchn_interdomain evtchn_send

evtchn_status evtchn_reset get_pod_target set_pod_target map_domain_pirq irq_permission

iomem_permission pci_config_permission"}

cap_files = "/files/foo /files/bar"

cap_evtchn = "0"

on_crash = "preserve"

Figure 6. Xen-Cap VM config file

And finally, cap_evtchn lists domain id’s which can
establish event channel communication with one another.
Here is an example config file,

6. Related Work
Securing large stacks of untrusted software is an ongo-
ing effort. There have been numerous research effort
in finding the right security model. As experience has
shown, none of the security models have been able to
solve all the problems. There have been a number of
mandatory access control frameworks (MAC) such as
SELinux [18], AppArmor [2], Smack [16], and Solaris
Trusted Extensions [8], that help but does not completely
solve the problem. MAC frameworks depend on secu-

rity policies and it becomes a problem to come up with
a policy to deal with every situation.

Capsicum is the latest research work that implements
capability access control framework in FreeBSD at the
level of file descriptors [21]. Capsicum helps sandbox
applications and disaggregate privileges at the user-
level applications. However, similar to MAC framework,
Capsicum does not protect against a number of attacks
on the operating system kernel.

There have been numerous research operating sys-
tems [3, 7, 15, 17] that implement capability systems
from scratch. However, there have been no solutions to
traditional desktop and server environments.
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There are solutions that leverage hypervisors to
provide isolation like Xen-Cap. Some of them are
Qubes [15], Bromium [3], and XenClient [22]. These
solutions attempt to sandbox applications by execut-
ing them in a separate VM. Complete isolation works
well in environments where sharing is not required. But
many subsystems in the operating system are inherently
designed to provide sharing of resources (e.g. file sys-
tems, block storage, network stack), require mechanism
for secure sharing to avoid operating with reduced func-
tionality or with excessive privilege. Xen-Cap provides
ways to secure environments where is sharing is neces-
sary. Securing NFS under Xen-Cap was one such ways
of achieving the same.

Disaggregation of core operating system services,
device drivers, and hardware devices is important. Sand-
boxing applications in individual VMs helps to reduce
privilege attacks but does not address the attacks against
devices or device drivers. Xen [1], VMWare [14] and
Bromium [3] by default run all the device drivers in a
single privileged domain. Therefore, a vulnerability in
one of the device drivers could lead to a compromise of
the entire guest VM.

7. Conclusions
Xen-Cap describes our approach to implement the capa-
bility model on the Xen hypervisor. Xen-Cap serves as
a simple prototype to examine the issues one can face
while designing a capability model on a virtualized sys-
tem. Our approach was aimed to reduce re-engineering
effort which resulted in simplifying a lot of details. We
were able to use Xen-Cap to secure critical services run-
ning on Xen without significant amount of code changes.
The nice feature of Xen-Cap is that it is simple to use
(just three hypercalls).

We have some more areas that needs work in future.
The capability rules that we have implemented works
well for simple scenarios. The grant rule requires more
thinking as we do not address issues involving transitive
grants. We did not have time to implement revoke rule.
Revoking capabilities will require mechanisms to track
which domain has those capabilities in order to do
it recursively. The CSpace data structure needs to be
replaced with a more efficient structure. We could make
use of read-only capability caches inside the hypervisor
to enhance CSpace lookup. Naming resources with
capabilities will require a different design. We may have
to adopt a capability table similar to seL4 or EROS.

Using persistence store for capabilities is another area
we haven’t looked at. To make isolation completely
transparent and quick, we need mechanisms to spawn
light-weight VMs.

Overall, this is a step towards realizing a production
system that offers isolation of services with flexible and
fine-grained access control model.
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