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View from 5,000 Feet

Source: H&P textbook
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Latches and Clocks in a Single-Cycle Design
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 The entire instruction executes in a single cycle
 Green blocks are latches
 At the rising edge, a new PC is recorded
 At the rising edge, the result of the previous cycle is recorded
 At the falling edge, the address of LW/SW is recorded so
  we can access the data memory in the 2nd half of the cycle
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Multi-Stage Circuit

●  Instead of executing the entire instruction in a single  
cycle (a single stage), let’s break up the execution into 
 multiple stages, each separated by a latch
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Building a Car

Time
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Building a Car

Start and finish a job before moving to the next

Time

Jobs

Unpipelined
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The Assembly Line
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Break the job into smaller stages
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Performance Improvements?

 Does it take longer to finish each individual job?

 Does it take shorter to finish a series of jobs?

 What assumptions were made while answering  these  questions?

Is a 10-stage pipeline better than a 5-stage pipeline?



Quantitative Effects

●  As a result of pipelining:
● Time in ns per instruction goes up
● Each instruction takes more cycles to execute
● But… average CPI remains roughly the same
● Clock speed goes up
● Total execution time goes down, resulting in lower average 

time per instruction
● Under ideal conditions, speedup 

= ratio of elapsed times between successive instruction completions 

= number of pipeline stages = increase in clock speed
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Clocks and Latches

Stage 1 Stage 2
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Clocks and Latches

Stage 1 Stage 2L

Clk

L



12

Some Equations

• Unpipelined: time to execute one instruction = T + Tovh

• For an N-stage pipeline, time per stage = T/N + Tovh

• Total time per instruction = N (T/N + Tovh) = T + N Tovh

• Clock cycle time = T/N + Tovh

• Clock speed = 1 / (T/N + Tovh)
• Ideal speedup = (T + Tovh) / (T/N + Tovh)
• Cycles to complete one instruction = N
• Average CPI (cycles per instr) = 1
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A 5-Stage Pipeline

Source: H&P textbook
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A 5-Stage Pipeline

 Use the PC to access the I-cache and increment PC by 4
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A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)
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RISC/CISC  Loads/Stores
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A 5-Stage Pipeline

ALU computation, effective address computation for load/store
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A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles
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A 5-Stage Pipeline

Write result of ALU computation or load into register file



  

Thank you!
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AM vs. GM

• GM of IPCs = 1 / GM of CPIs

• AM of IPCs represents thruput for a workload where each
  program runs sequentially for 1 cycle each; but high-IPC
  programs contribute more to the AM

• GM of IPCs does not represent run-time for any real
  workload (what does it mean to multiply instructions?); but
  every program’s IPC contributes equally to the final measure
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Speedup Vs. Percentage

• “Speedup” is a ratio = old exec time / new exec time

• “Improvement”, “Increase”, “Decrease” usually refer to
   percentage relative to the baseline 
   = (new perf – old perf) / old perf

• A program ran in 100 seconds on my old laptop and in 70
  seconds on my new laptop

 What is the speedup?
 What is the percentage increase in performance?
 What is the reduction in execution time?
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