

250P: Computer Systems
Architecture

Lecture 4: Basics of pipelining

Anton Burtsev
April, 2021

2

View from 5,000 Feet

Source: H&P textbook

3

Latches and Clocks in a Single-Cycle Design

PC
Instr
Mem

Reg
File

ALU Data
Memory

Addr

 The entire instruction executes in a single cycle
 Green blocks are latches
 At the rising edge, a new PC is recorded
 At the rising edge, the result of the previous cycle is recorded
 At the falling edge, the address of LW/SW is recorded so
 we can access the data memory in the 2nd half of the cycle

4

Multi-Stage Circuit

● Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
 multiple stages, each separated by a latch

PC
Instr
Mem

ALU Data
Memory

L2
Reg
File

L3 L4

Reg
File

L5

5

Building a Car

Time

6

Building a Car

Start and finish a job before moving to the next

Time

Jobs

Unpipelined

7

The Assembly Line

A

Time

Jobs

Pipelined

B C

A B C

A B C

A B C

Break the job into smaller stages

8

Performance Improvements?

 Does it take longer to finish each individual job?

 Does it take shorter to finish a series of jobs?

 What assumptions were made while answering these questions?

Is a 10-stage pipeline better than a 5-stage pipeline?

Quantitative Effects

● As a result of pipelining:
● Time in ns per instruction goes up
● Each instruction takes more cycles to execute
● But… average CPI remains roughly the same
● Clock speed goes up
● Total execution time goes down, resulting in lower average

time per instruction
● Under ideal conditions, speedup

= ratio of elapsed times between successive instruction completions

= number of pipeline stages = increase in clock speed

10

Clocks and Latches

Stage 1 Stage 2

11

Clocks and Latches

Stage 1 Stage 2L

Clk

L

12

Some Equations

• Unpipelined: time to execute one instruction = T + Tovh

• For an N-stage pipeline, time per stage = T/N + Tovh

• Total time per instruction = N (T/N + Tovh) = T + N Tovh

• Clock cycle time = T/N + Tovh

• Clock speed = 1 / (T/N + Tovh)
• Ideal speedup = (T + Tovh) / (T/N + Tovh)
• Cycles to complete one instruction = N
• Average CPI (cycles per instr) = 1

13

A 5-Stage Pipeline

Source: H&P textbook

14

A 5-Stage Pipeline

 Use the PC to access the I-cache and increment PC by 4

15

A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)

16

RISC/CISC Loads/Stores

17

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

18

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

19

A 5-Stage Pipeline

Write result of ALU computation or load into register file

Thank you!

21

AM vs. GM

• GM of IPCs = 1 / GM of CPIs

• AM of IPCs represents thruput for a workload where each
 program runs sequentially for 1 cycle each; but high-IPC
 programs contribute more to the AM

• GM of IPCs does not represent run-time for any real
 workload (what does it mean to multiply instructions?); but
 every program’s IPC contributes equally to the final measure

22

Speedup Vs. Percentage

• “Speedup” is a ratio = old exec time / new exec time

• “Improvement”, “Increase”, “Decrease” usually refer to
 percentage relative to the baseline
 = (new perf – old perf) / old perf

• A program ran in 100 seconds on my old laptop and in 70
 seconds on my new laptop

 What is the speedup?
 What is the percentage increase in performance?
 What is the reduction in execution time?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

