

250P: Computer Systems
Architecture

Lecture 10: Caches

Anton Burtsev
November, 2019

2

The Cache Hierarchy

Core L1

L2

L3

Off-chip memory

3

Accessing the Cache

8-byte words

 101000

Direct-mapped cache:
each address maps to

a unique address

8 words: 3 index bits

Byte address

Data array

Sets

Offset

4

The Tag Array

8-byte words

 101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

5

Increasing Line Size

32-byte cache
line size or
block size

 10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size smaller tag array,
fewer misses because of spatial locality

6

Associativity

 10100000

Byte address

Tag

Data arrayTag array

Set associativity fewer conflicts; wasted power
 because multiple data and tags are read

Way-1 Way-2

Compare

7

Example

• 32 KB 4-way set-associative data cache array with 32
 byte line sizes

• How many sets?

• How many index bits, offset bits, tag bits?

• How large is the tag array?

8

Types of Cache Misses

• Compulsory misses: happens the first time a memory
 word is accessed – the misses for an infinite cache

• Capacity misses: happens because the program touched
 many other words before re-touching the same word – the
 misses for a fully-associative cache

• Conflict misses: happens because two words map to the
 same location in the cache – the misses generated while
 moving from a fully-associative to a direct-mapped cache

• Sidenote: can a fully-associative cache have more misses
 than a direct-mapped cache of the same size?

9

Reducing Miss Rate

• Large block size – reduces compulsory misses, reduces
 miss penalty in case of spatial locality – increases traffic
 between different levels, space waste, and conflict misses

• Large cache – reduces capacity/conflict misses – access
 time penalty

• High associativity – reduces conflict misses – rule of thumb:
 2-way cache of capacity N/2 has the same miss rate as
 1-way cache of capacity N – more energy

10

More Cache Basics

• L1 caches are split as instruction and data; L2 and L3
 are unified

• The L1/L2 hierarchy can be inclusive, exclusive, or
 non-inclusive

• On a write, you can do write-allocate or write-no-allocate

• On a write, you can do writeback or write-through;
 write-back reduces traffic, write-through simplifies coherence

• Reads get higher priority; writes are usually buffered

• L1 does parallel tag/data access; L2/L3 does serial tag/data

11

Techniques to Reduce Cache Misses

• Victim caches

• Better replacement policies – pseudo-LRU, NRU, DRRIP

• Cache compression

12

Victim Caches

• A direct-mapped cache suffers from misses because
 multiple pieces of data map to the same location

• The processor often tries to access data that it recently
 discarded – all discards are placed in a small victim cache
 (4 or 8 entries) – the victim cache is checked before going
 to L2

• Can be viewed as additional associativity for a few sets
 that tend to have the most conflicts

13

Replacement Policies

• Pseudo-LRU: maintain a tree and keep track of which
 side of the tree was touched more recently; simple bit ops

• NRU: every block in a set has a bit; the bit is made zero
 when the block is touched; if all are zero, make all one;
 a block with bit set to 1 is evicted

• DRRIP: use multiple (say, 3) NRU bits; incoming blocks
 are set to a high number (say 6), so they are close to
 being evicted; similar to placing an incoming block near
 the head of the LRU list instead of near the tail

14

Tolerating Miss Penalty

• Out of order execution: can do other useful work while
 waiting for the miss – can have multiple cache misses
 -- cache controller has to keep track of multiple
 outstanding misses (non-blocking cache)

• Hardware and software prefetching into prefetch buffers
 – aggressive prefetching can increase contention for buses

15

Stream Buffers

• Simplest form of prefetch: on every miss, bring in
 multiple cache lines

• When you read the top of the queue, bring in the next line

L1
Stream buffer

Sequential lines

16

Stride-Based Prefetching

• For each load, keep track of the last address accessed
 by the load and a possibly consistent stride

• FSM detects consistent stride and issues prefetches

init

trans

steady

no-pred

incorrect

correct

incorrect
(update stride)

correct

correct

correct

incorrect
(update stride)

incorrect
(update stride)

tag prev_addr stride statePC

17

Prefetching

• Hardware prefetching can be employed for any of the
 cache levels

• It can introduce cache pollution – prefetched data is
 often placed in a separate prefetch buffer to avoid
 pollution – this buffer must be looked up in parallel
 with the cache access

• Aggressive prefetching increases “coverage”, but leads
 to a reduction in “accuracy” wasted memory bandwidth

• Prefetches must be timely: they must be issued sufficiently
 in advance to hide the latency, but not too early (to avoid
 pollution and eviction before use)

18

Intel Montecito Cache

Two cores, each
with a private

12 MB L3 cache
and 1 MB L2

Naffziger et al., Journal of Solid-State Circuits, 2006

19

Shared Vs. Private Caches in Multi-Core

• What are the pros/cons to a shared L2 cache?

P4P3P2P1

L1

L2L2L2L2

P4P3P2P1

L2

L1 L1 L1 L1 L1 L1 L1

20

Shared Vs. Private Caches in Multi-Core

• Advantages of a shared cache:
 Space is dynamically allocated among cores
 No waste of space because of replication
 Potentially faster cache coherence (and easier to
 locate data on a miss)

• Advantages of a private cache:
 small L2 faster access time
 private bus to L2 less contention

21

UCA and NUCA

• The small-sized caches so far have all been uniform cache
 access: the latency for any access is a constant, no matter
 where data is found

• For a large multi-megabyte cache, it is expensive to limit
 access time by the worst case delay: hence, non-uniform
 cache architecture

22

Large NUCA

CPU Issues to be addressed for
Non-Uniform Cache Access:

• Mapping

• Migration

• Search

• Replication

Core 0

L1
D$

L1
I$

 L2 $

Core 1

L1
D$

L1
I$

 L2 $

Core 2

L1
D$

L1
I$

 L2 $

Core 3

L1
D$

L1
I$

 L2 $

Core 4

L1
D$

L1
I$

 L2 $

Core 5

L1
D$

L1
I$

 L2 $

Core 6

L1
D$

L1
I$

 L2 $

Core 7

L1
D$

L1
I$

 L2 $

Memory Controller for off-chip access

A single tile composed
of a core, L1 caches, and

a bank (slice) of the
shared L2 cache

The cache controller
forwards address requests
 to the appropriate L2 bank

and handles coherence
operations

Shared NUCA Cache

24

Virtual Memory

• Processes deal with virtual memory – they have the
 illusion that a very large address space is available to
 them

• There is only a limited amount of physical memory that is
 shared by all processes – a process places part of its
 virtual memory in this physical memory and the rest is
 stored on disk

• Thanks to locality, disk access is likely to be uncommon

• The hardware ensures that one process cannot access
 the memory of a different process

25

Virtual Memory and Page Tables

26

Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to phys
page number

Physical memory

13

Physical address

page offsetphysical page
number

13

27

Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
 memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
 huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
 translating virtual to physical page number

• The memory-disk hierarchy can be either inclusive or
 exclusive and the write policy is writeback

28

TLB

• Since the number of pages is very high, the page table
 capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
 to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
 may not even be found in the cache – two expensive
 memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
 and reduce the capacity of the page table, but also
 increases memory waste

29

TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first
 look up the TLB, then the cache longer access time
 Multiple virtual addresses can map to the same
 physical address – can we ensure that these
 different virtual addresses will map to the same
 location in cache? Else, there will be two different
 copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same
 physical address, a virtual tag comparison can flag a
 miss even if the correct physical memory word is present

30

TLB and Cache

31

Virtually Indexed Caches

• 24-bit virtual address, 4KB page size 12 bits offset and
 12 bits virtual page number
• To handle the example below, the cache must be designed to use only 12
 index bits – for example, make the 64KB cache 16-way
• Page coloring can ensure that some bits of virtual and physical address match

abcdef abbdef

Page in physical
memory

Data cache that needs 16
index bits 64KB direct-mapped

or 128KB 2-way…

cdef

bdef

Virtually indexed
cache

Thank you!

33

Problem 1

• Memory access time: Assume a program that has cache
 access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
 300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
 Should you get rid of the L3?

34

Problem 1

• Memory access time: Assume a program that has cache
 access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
 300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
 Should you get rid of the L3?

With L3: 1000 + 10x20 + 30x10 + 300x5 = 3000
Without L3: 1000 + 10x20 + 10x300 = 4200

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

