

250P: Computer Systems
Architecture

Lecture 9: Out-of-order execution

Anton Burtsev
October, 2019

2

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2
R1 R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1 R1+R2
T2 T1+R3

BEQZ T2
T4 T1+T2
T5 T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

3

Design Details - I

• Instructions enter the pipeline in order

• No need for branch delay slots if prediction happens in time

• Instructions leave the pipeline in order – all instructions
 that enter also get placed in the ROB – the process of an
 instruction leaving the ROB (in order) is called commit –
 an instruction commits only if it and all instructions before
 it have completed successfully (without an exception)

• To preserve precise exceptions, a result is written into the
 register file only when the instruction commits – until then,
 the result is saved in a temporary register in the ROB

4

Design Details - II

• Instructions get renamed and placed in the issue queue –
 some operands are available (T1-T6; R1-R32), while
 others are being produced by instructions in flight (T1-T6)

• As instructions finish, they write results into the ROB (T1-T6)
 and broadcast the operand tag (T1-T6) to the issue queue –
 instructions now know if their operands are ready

• When a ready instruction issues, it reads its operands from
 T1-T6 and R1-R32 and executes (out-of-order execution)

• Can you have WAW or WAR hazards? By using more
 names (T1-T6), name dependences can be avoided

5

Design Details - III

• If instr-3 raises an exception, wait until it reaches the top
 of the ROB – at this point, R1-R32 contain results for all
 instructions up to instr-3 – save registers, save PC of instr-3,
 and service the exception

• If branch is a mispredict, flush all instructions after the
 branch and start on the correct path – mispredicted instrs
 will not have updated registers (the branch cannot commit
 until it has completed and the flush happens as soon as the
 branch completes)

• Potential problems: ?

6

Managing Register Names

Logical
Registers
R1-R32

Physical
Registers
P1-P64

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2

P33 P1+P2
P34 P33+P3

BEQZ P34
P35 P33+P34

At the start, R1-R32 can be found in P1-P32
Instructions stop entering the pipeline when P64 is assigned

What happens on commit?

Temporary values are stored in the register file and not the ROB

7

The Commit Process

• On commit, no copy is required

• The register map table is updated – the “committed” value
 of R1 is now in P33 and not P1 – on an exception, P33 is
 copied to memory and not P1

• An instruction in the issue queue need not modify its
 input operand when the producer commits

• When instruction-1 commits, we no longer have any use
 for P1 – it is put in a free pool and a new instruction can
 now enter the pipeline for every instr that commits, a
 new instr can enter the pipeline number of in-flight
 instrs is a constant = number of extra (rename) registers

8

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1 R1+R2
R2 R1+R3

BEQZ R2
R3 R1+R2
R1 R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

Reorder Buffer (ROB)

P33 P1+P2
P34 P33+P3

BEQZ P34
P35 P33+P34
P36 P35+P34

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

Speculative
Reg Map
R1P36
R2P34

Committed
Reg Map
R1P1
R2P2

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

