
CS 238P Name (Print):

Spring 2019
Midterm
05/15/2018
Time Limit: 6:30pm - 7:50pm

• Don’t forget to write your name on this exam.

• This is an open book, open notes exam. But no online or in-class chatting.

• Ask us if you something is confusing in the questions.

• Organize your work, in a reasonably neat and coherent way, in the space provided. Work
scattered all over the page without a clear ordering will receive very little credit.

• Mysterious or unsupported answers will not receive full credit. A correct answer,
unsupported by explanation will receive no credit; an incorrect answer supported by substan-
tially correct explanations might still receive partial credit.

• If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem Points Score

1 30

2 10

3 35

4 5

Total: 80

CS 238P Midterm - Page 2 of 13

1. OS Interfaces

Xv6 imlements the PIPE case in its shell in the following way:

8650 case PIPE:

8651 pcmd = (struct pipecmd*)cmd;

8652 if(pipe(p) < 0)

8653 panic("pipe");

8654 if(fork1() == 0){

8655 close(1);

8656 dup(p[1]);

8657 close(p[0]);

8658 close(p[1]);

8659 runcmd(pcmd>left);

8660 }

8661 if(fork1() == 0){

8662 close(0);

8663 dup(p[0]);

8664 close(p[0]);

8665 close(p[1]);

8666 runcmd(pcmd>right);

8667 }

8668 close(p[0]);

8669 close(p[1]);

8670 wait();

8671 wait();

8672 break;

(a) (5 points) Explain what lines 8654–8659 are doing?

Answer: Line 8654 forks a new process and checks if execution is inside the “child”. If
yes the code closes the standard output (descriptor 1) (line 8655), duplicates the write and
of the pipe into the standard output (line 8656), and closes both read and write ends of
the pipe (lines 8657 and 8658). It then execs the left part of the “pipe” with the runcmd

function (line 8659).

CS 238P Midterm - Page 3 of 13

(b) (10 points) Bob who likes to optimize his code decides that it’s not necessary to fork twice,
after all the fork() system call takes time. He re-writes his xv6 shell like this

8650 case PIPE:

8651 pcmd = (struct pipecmd*)cmd;

8652 if(pipe(p) < 0)

8653 panic("pipe");

8654 if(fork1() == 0){

8655 close(1);

8656 dup(p[1]);

8657 close(p[0]);

8658 close(p[1]);

8659 runcmd(pcmd>left);

8660 }

8661 wait()

8662 close(0);

8663 dup(p[0]);

8664 close(p[0]);

8665 close(p[1]);

8666 runcmd(pcmd>right);

8672 break;

He runs it a couple of times and everything seems to work, so he shows his optimization to
Alice, an experienced UNIX hacker. Alice however says that Bob’s code is horribly wrong.
Can you explain what she means, and what is wrong with Bob’s code?

Answer: Bob’s code waits for the left side of the pipe to finish. Since pipes have finite
capacity, e.g., 512 bytes in xv6, some left sides finish successfully, but longer outputs fill
the pipe completely before finishing. In this case, the left side will be waiting for the right
side to clean up some space by reading data from the pipe. However, since the right side
of the pipe does not start before the left finishes this never happens. TLDR: if left side
of the pipe produces an output larger than the size of the pipe’s buffer, Bob’s code gets
stuck forever.

CS 238P Midterm - Page 4 of 13

(c) (15 points) Write a program that uses the UNIX system call API, as described in Chapter
0 of the xv6 book. The program tee that reads from standard input and writes to standard
output and to a file that is passed as a command line argument.

CS 238P Midterm - Page 5 of 13

2. Basic page tables.

Consider the following 32-bit x86 page table setup.

%cr3 holds 0x00000000.

The Page Directory Page at physical address 0x00000000:

PDE 0: PPN=0x00001, PTE_P, PTE_U, PTE_W

... all other PDEs are zero

The Page Table Page at physical address 0x00001000 (which is PPN 0x00001):

PTE 0: PPN=0x00000, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x00001, PTE_P, PTE_U, PTE_W

... all other PTEs are zero

(a) (5 points) What are all virtual addresses mapped by this page table?

Answer: The page table maps two consequtive virtual pages (addresses 0x0-0x2000) to
two consequtive physical pages (physical addresses 0x0-0x2000).

(b) (5 points) Extend this page table to map virtual address 0x100000 which is 1MB.

Answer: Lets assume that we would like to map the virtual address 0x100000 to physical
address 0x0. Then we need to convert 0x100000 into 10:10:12 form to see which entries of
the page table we need to use for this mapping. The top 10 bits are 0x0, middle ten are
0x100 (this is 1, and the lower 12 bits are 0x0. The page table should be extended with
the following entry:

PTE 256: PPN=0x00000, PTE_P, PTE_U, PTE_W

CS 238P Midterm - Page 6 of 13

3. Stack and calling conventions.

xv6 implements exec() system call like this:

6600 #include "types.h"

6601 #include "param.h"

6602 #include "memlayout.h"

6603 #include "mmu.h"

6604 #include "proc.h"

6605 #include "defs.h"

6606 #include "x86.h"

6607 #include "elf.h"

6608

6609 int

6610 exec(char *path, char **argv)

6611 {

6612 char *s, *last;

6613 int i, off;

6614 uint argc, sz, sp, ustack[3+MAXARG+1];

6615 struct elfhdr elf;

6616 struct inode *ip;

6617 struct proghdr ph;

6618 pde_t *pgdir, *oldpgdir;

6619 struct proc *curproc = myproc();

6620

6621 begin_op();

6622

6623 if((ip = namei(path)) == 0){

6624 end_op();

6625 cprintf("exec: fail\n");

6626 return 1;

6627 }

6628 ilock(ip);

6629 pgdir = 0;

6630

6631 // Check ELF header

6632 if(readi(ip, (char*)&elf, 0, sizeof(elf)) != sizeof(elf))

6633 goto bad;

6634 if(elf.magic != ELF_MAGIC)

6635 goto bad;

6636

6637 if((pgdir = setupkvm()) == 0)

6638 goto bad;

6639

6640 // Load program into memory.

6641 sz = 0;

6642 for(i=0, off=elf.phoff; i<elf.phnum; i++, off+=sizeof(ph)){

6643 if(readi(ip, (char*)&ph, off, sizeof(ph)) != sizeof(ph))

6644 goto bad;

CS 238P Midterm - Page 7 of 13

6645 if(ph.type != ELF_PROG_LOAD)

6646 continue;

6647 if(ph.memsz < ph.filesz)6648 goto bad;

6649 if(ph.vaddr + ph.memsz < ph.vaddr)

6650 goto bad;

6651 if((sz = allocuvm(pgdir, sz, ph.vaddr + ph.memsz)) == 0)

6652 goto bad;

6653 if(ph.vaddr % PGSIZE != 0)

6654 goto bad;

6655 if(loaduvm(pgdir, (char*)ph.vaddr, ip, ph.off, ph.filesz) < 0)

6656 goto bad;

6657 }

6658 iunlockput(ip);

6659 end_op();

6660 ip = 0;

6661

6662 // Allocate two pages at the next page boundary.

6663 // Make the first inaccessible. Use the second as the user stack.

6664 sz = PGROUNDUP(sz);

6665 if((sz = allocuvm(pgdir, sz, sz + 2*PGSIZE)) == 0)

6666 goto bad;

6667 clearpteu(pgdir, (char*)(sz 2*PGSIZE));

6668 sp = sz;

6669

6670 // Push argument strings, prepare rest of stack in ustack.

6671 for(argc = 0; argv[argc]; argc++) {

6672 if(argc >= MAXARG)

6673 goto bad;

6674 sp = (sp (strlen(argv[argc]) + 1)) & ~3;

6675 if(copyout(pgdir, sp, argv[argc], strlen(argv[argc]) + 1) < 0)

6676 goto bad;

6677 ustack[3+argc] = sp;

6678 }

6679 ustack[3+argc] = 0;

6680

6681 ustack[0] = 0xffffffff; // fake return PC

6682 ustack[1] = argc;

6683 ustack[2] = sp (argc+1)*4; // argv pointer

6684

6685 sp = (3+argc+1) * 4;

6686 if(copyout(pgdir, sp, ustack, (3+argc+1)*4) < 0)

6687 goto bad;

6688

6689 // Save program name for debugging.

6690 for(last=s=path; *s; s++)

6691 if(*s == /)

6692 last = s+1;

6693 safestrcpy(curproc>name, last, sizeof(curproc>name));

CS 238P Midterm - Page 8 of 13

6694

6695 // Commit to the user image.

6696 oldpgdir = curproc>pgdir;

6697 curproc>pgdir = pgdir;

6698 curproc>sz = sz;

6699 curproc>tf>eip = elf.entry

6700 curproc>tf>esp = sp;

6701 switchuvm(curproc);

6702 freevm(oldpgdir);

6703 return 0;

6704

6705 bad:

6706 if(pgdir)

6707 freevm(pgdir);

6708 if(ip){

6709 iunlockput(ip);

6710 end_op();

6711 }

6712 return 1;

6713 }

(a) (5 points) Which lines in this code create the guard page? Explain what these lines do.

Answer: The following lines create the guard and stack pages:

6662 // Allocate two pages at the next page boundary.

6663 // Make the first inaccessible. Use the second as the user stack.

6664 sz = PGROUNDUP(sz);

6665 if((sz = allocuvm(pgdir, sz, sz + 2*PGSIZE)) == 0)

6666 goto bad;

6667 clearpteu(pgdir, (char*)(sz 2*PGSIZE));

6668 sp = sz;

Line 6665 allocates two pages right above the address sz that is used by the process for
text and data (loaded from the ELF file). The clearpteu() function clears the “user
accessible” flag for one of the pages making it a guard page. Line 6668 remembers where
the stack memory is allocated by saving it into the sp pointer.

CS 238P Midterm - Page 9 of 13

(b) (5 points) What is the purpose of the guard page?

Answer: The guard page allows the operating system to catch an exception when the
program runs out of memory on the page allocated for the stack. Without the guard page
the program would silently corrupt it’s own data section that would overlap with the stack
and would crash in some misterious ways.

(c) (5 points) Bob decides that he wants to allocate the stack in the first page of the process’
virtual address space (i.e., 0x0 - 0xfff). What does he need to change in the exec()’s
implementation above? Write the code for the new lines.

Answer: Bob deletes lines 6662-6668, and instead adds the following lines right between
lines 6641-6642

if((sz = allocuvm(pgdir, sz, sz + PGSIZE)) == 0)

goto bad;

sp = sz;

CS 238P Midterm - Page 10 of 13

(d) (10 points) Bob shows his new code to Alice, but she again says that it’s horribly wrong.
Can you explain what is wrong with Bob’s code and why even if it works on some programs
it will sooner or later fail.

Answer: Bob’s code boots and shell starts, and even some commands like

cat README

work, but something like ls doesn’t. This is because user-level programs in xv6 are linked
to have their text section at address 0x0, right where Bob wants to have stack. For some
lucky programs the fact that stack overwrites part of the program at the top of the first
page (or when the program text is smaller than one page) the code runs. But in general
as soon as the stack modifies the program’s code (text section) the program fails in some
unpredictable manner.

(e) (10 points) After working for a while Alice and Bob fix Bob’s implementation of exec().
Bob is happy, he also says that his code is better since it saves one page that is normally
wasted for the guard page. Do you think he is right, and if you allocate the stack at
address 0x0-0xfff (which is 4KB) the guard page is not needed? Explain your answer.

Answer: Alice fixes the Makefile to link all xv6 programs to start at the second page,
e.g.,

_%: %.o $(ULIB)

- $(LD) $(LDFLAGS) -N -e main -Ttext 0 -o $@ $^

+ $(LD) $(LDFLAGS) -N -e main -Ttext 0x1000 -o $@ $^

Now Bob’s code works, and he is right, his code doesn’t need a guard page since even if
stack overflows it wraps around the address space and tries to write addresses near the
very top of the address space (e.g., 0xfffffffc). These addresses however are mapped by the
kernel as not “user-accessible” (they are mapped as part of the 4th region in the memory
map, i.e., the I/O region), and hence the kernel catches an exception and kills the process.

CS 238P Midterm - Page 11 of 13

4. Physical and virtual memory allocation

(a) (5 points) Xv6 uses 234MB of physical memory. But how does it keep track of available
physical memory? Specifically, explain the following: the xv6 memory allocator (kalloc())
always returns a virtual address, but how does the allocator know which physical page to
use for each virtual address it allocates?

Answer: The allocator always returns one of the virtual addresses from the pool of
virtual pages that was constructed when the kernel booted (i.e., kinit1() and kinit2()

functions). These functions map these virtual pages one-to-one to physical pages, but
with a 2GB shift, i.e., the virtual address is always equals physical address of the page
plus 2GB. The allocator itself does not know anything about physical addresses of the
pages it manages, however, the rest of the kernel knows that this is how the pool was
constructed and hence it uses the 2GB shift for converting between physical and virtual
page addresses.

CS 238P Midterm - Page 12 of 13

CS 238P Midterm - Page 13 of 13

