Before We get Started – Random Thoughts

- **For Memory Systems: More == Faster**
 - DRAM as a caching layer to reduce SSD/Disk access
 - (Workload-specific) speedup may be attained from increasing capacity
 - More (DRAM) capacity at lower bandwidth and/or slightly longer latency may still be faster

- **Difference Between Academia and Industry**
 - Academia: Write papers about using 2X resources to get 10% speed up
 - Industry: Figure out how to reduces costs by 50% and keep 90% of performance

- **Cheaper is better than better**
 - (Alternative statement) Barely good enough and cheaper is better than much better and a bit more expensive
Quick Historical Review
Memory Expansion – 20+ years ago
Then, Memory Modules
Inphi ExacTik® Memory Interface Products

<table>
<thead>
<tr>
<th>DDR2 Memory Interface</th>
<th>DDR3 Memory Interface</th>
<th>DDR4 Memory Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isolation Memory Buffer</th>
<th>NVDIMM iSC Storage Controller</th>
<th>2H LRDIMM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Not So Simple Anymore
Why Memory Buffering?
Benefits of Buffering
Benefits

- **More Capacity**
 - One controller to connect to many DRAM devices

- **More Bandwidth**
 - Multiple loads (DRAM devices) slow down bus.
 - Buffer-and-re-drive cleans up system signal integrity, enabling higher operating data rate

- **Better RAS**
 - Buffers can check correctness of commands/data

- **Additional Logic Interface to do “interesting things”, e.g.**
 - (Flash-backed, DRAM Access) NVDIMM
 - NVRAM-only NVDIMM
Memory Buffering could Reduce Operating Latency

- LRDIMM adds ~3 ns over RDIMM at same frequency
- But, parts of memory controller operates at same frequency as memory
- At higher frequency, latency through memory controller is lower
- LRDIMM total memory access latency may be lower than RDIMM, depending on frequency of comparison
 - e.g. 3 DPC LRDIMM @ 1333 MT/s has lower idle latency than 3 DPC RDIMM @ 800 MT/s
 - 85 ns vs 92 ns
1. From via to DRAM pad, typically ~10 mm distance. Non-target ODT may not be needed at low datarates

2. Even when non-target ODT is used, only bottom-most die needed to provide termination

- Isolated channels means that
 - Termination values may be changed/reduced or even disabled
 - Power management schemes and termination schemes may be separately optimized
But . . . Memory Buffers should behave and cost like a wire

- **Zero cost**
 - Should be tiny and simple to design

- **Zero latency**
 - No junk (logic) in data path – logic slows things down

- **Zero footprint**
 - DIMM’s and System Board should carry “useful stuff”, not chips that just buffer and re-drive signals

- **Zero power**
 - Ideally . . .
How Do You Build (Architect) a Memory Buffer?
So What Do You Do When you want a Memory Buffer?

- **Define Scope**
 - Improve pin-capacity-bandwidth of CPU interface?
 - Interface conversion for compatibility
 - On-DIMM or On-system-board application

- **How many pins do you need for this chip or chipset?**
 - More pins -> Larger package -> higher cost & larger footprint
 - Will it fit?

- **Speed target and power budget**
Anatomy of a DDR3 (LP) DIMM

1. 133.35 mm x ~30 mm
 - Component area ~125 mm x ~25 mm
 - 40 “DRAM sites”, ~11.5 mm x ~11.5 mm each

2. 240 pins, 1 mm pitch
 - DQ GND reference, Addr/Cmd Vdd reference
 - 2:1 signal-to-ground ratio
 - Same interface for UDIMM, RDIMM, LRDIMM

3. Notches for heat spreader attachment
 - Find some free space to put some buffers!
This is a “Nice Architecture”

- Register re-drives address and control to local MB
- Local MB re-drives address to DRAM on local (x16) slice
- Local MB re-drives data between DRAM and host on local slice
- Simple chips, everything localized, no training needed
But...

- Local Buffers take a lot of precious DIMM real estate
 - Constrains DRAM package size
Inphi iMB – Single Chip Address and Data Buffer

- Winning JEDEC Architecture for DDR3 SDRAM Memory Buffering
- Single Chip
 - Low Cost
 - Low DIMM Surface Area Impact
 - 36 Max Size (11 mm x 11.5 mm) DRAM Devices
 - Long DQ Stub Lengths
 - Not scalable to very high data rates, but . . .
 - High enough – 2 DPC @ 1866/1.5V
- More complicated chip design than previous architecture, lots of training for timing and find phase adjustments
Example: DDR4 LRDIMM
DDR4 LRDIMM Chipset Architecture

- **RCD (Registering Clock Driver)** is the Address and Control Buffer, generates command sequences to Data Buffers (DB)

- Data Buffers must be trained to resolve 3-body synchronization problem (RCD, host MC, DRAM)
DDR4 LP DIMM

- **133.35 mm x 31.25 mm**
 - Added 0.9 mm DIMM height for DB, attained by using low seating plane DIMM connector

- **288 pins, 0.85 mm pitch**
 - DQ still GND referenced, Addr/Cmd still Vdd referenced
 - 1:1 DQ signal-to-ground ratio
- Ideally, DRAM Manufactures (SEC, Micron, Hynix) would like to place 36 Max Dimension DRAM Devices on Module
 - 11.0 mm x 11.5 mm or 9 mm x 13 mm
- DRAM devices cannot shrink (much) below 11.5 mm in y dimension due to ball footprint constraint
- Data Buffer (DB) competes with DRAM for area
 - DB needs to be as small as possible
Data Buffer Size and Placement

- Data Buffer designed to be long and narrow (3.0 mm x 7.5 mm)
 - Concern for planarity

- Data Buffer placed as close to DIMM finger as possible
 - Short DQ Stubs

- DIMM x4 DQ ports alternate front/back of DIMM
 - E.g. DQ[3:0] on front, DQ[7:4] on back

- The two x4 DQ ports on Data Buffers are interleaved
 - Facilitate routing to DIMM finger

- Note: DB-to-DIMM-finger routing shown without series stub resistor
Inphi-Enabled DDR4 LRDIMM

FRONT

REVERSE
Ideal LRDIMM Component Placement

- DRAM Devices in “vertical” orientation
- Far easier to route Address, Command, Control and Clock Signals
 - Relatively easier task of path length matching
“Windmill” or “Flower” supports DRAM devices with larger aspect ratios
LRDIMM R/C E Clock Topology

- **Four y-clock pairs support**
 - Left front : Rank 0 (and Rank 2)
 - Left reverse (back) : Rank 1 (and Rank 3)
 - Right front : Rank 0 (and Rank 2)
 - Right reverse : Rank 1 (and Rank 3)
Y clock RCD to first DRAM top row - 35 mm
Y clock RCD to first DRAM bottom row - 35 mm
Y clock first DRAM to second DRAM top row - 28 mm
Y clock first DRAM to second DRAM bottom row – 28 mm
DB Clock RCD to First DB - 31.3 mm
DB Clock First DB to Second DB - 10.6 mm
DDR4 LRDIMM R/C E DRAM-to-DB DQ Routing

- For each DB
 - One nibble is on top row of a given slice
 - Second nibble is on bottom of the same slice

- Routing length differential between nibbles depends on slice (DB)

First DRAM top row to First DB - 32 mm
First DRAM bottom row to first DB - 27 mm
Last DRAM top row to First DB - 33 mm
Last DRAM bottom row to first DB - 11 mm
1. Clock for read command arrives at RCD
2. $t_{PDM} + y_{\text{clock_to_DRAM_flight_time}}$ later, clock for read command arrives at DRAM devices
3. $AL + PL + CL$ time after step #2, DRAM devices launch data, subject to t_{DQSCK} variances
4. 27 mm (@ 7ps/mm) \sim 189 ps after step #3, first DB receives data from first DRAM on bottom row
5. 32 mm (@ 7ps/mm) \sim 224 ps after step #3, first DB receives data from first DRAM on top row
6. 100 mm(@ 10 ps/mm) \sim 1 ns after step #2, clock arrives at last DRAM devices
7. $AL + PL + CL$ time after step #6, DRAM devices launch data, subject to t_{DQSCK} variances
8. 11 mm (@ 7ps/mm) \sim 77 ps after step #7, first DB receives data from first DRAM on bottom row
9. 33 mm (@ 7ps/mm) \sim 231 ps after step #7, first DB receives data from first DRAM on top row
Buffer on Board
Data buffers are 4:1 Switches

Address and Data Buffers on same side as CPU/DIMMs

Expands channel capacity from 2 DPC to 8 DPC

Total spacing is 42 DIMM positions across
 — CPU occupies 12 DIMM positions
 — Address and Data buffers occupy 2 DIMM positions per channel (total of 6)
 — $6 + 12 + 24 = 42$
Cisco UCS (Nehalem-based System Memory Expansion)
IBM Power 7
High Speed Serdes to DDRx

Table 3: IBM POWER7 memory configurations.

<table>
<thead>
<tr>
<th>DDR3 DRAM frequency</th>
<th>Channel frequency</th>
<th>Speed ratio</th>
<th>Raw channel bandwidth</th>
<th>Raw DRAM data bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 MHz</td>
<td>4.8 GHz</td>
<td>6:1</td>
<td>135 GB/s</td>
<td>102 GB/s</td>
</tr>
<tr>
<td>1,066 MHz</td>
<td>6.4 GHz</td>
<td>6:1</td>
<td>180 GB/s</td>
<td>137 GB/s</td>
</tr>
<tr>
<td>1,333 MHz</td>
<td>5.3 GHz</td>
<td>4:1</td>
<td>149 GB/s</td>
<td>171 GB/s</td>
</tr>
<tr>
<td>1,600 MHz</td>
<td>6.4 GHz</td>
<td>4:1</td>
<td>180 GB/s</td>
<td>205 GB/s</td>
</tr>
</tbody>
</table>
Buffering Within Memory Stack
HMC vs. HBM

GPGPU-HBM-Memory System

- DRAM Die
- DRAM Die
- DRAM Die
- DRAM Die
- HBM Interface Die

GPGPU (system)

- Parallel, TSV connection to buffer chip
- Buffer chip fabbed on DRAM process
- Larger, more expensive substrate

(FR4) PCB

High bump count (3000+ bumps, 8 * 128b channels), moderate speed parallel I/O (e.g. 2 Gb/s)

CPU-Memory System

- Processor substrate
- HMC Interface Die
- Memory Die
- Memory Die
- Memory Die
- Memory Die

HMC device

- Buffer chip fabbed on (e.g. TSMC) Logic process
- Smaller, lower cost substrate

(FR4) PCB

Low Pin Count, High speed SerDes (e.g. 15+ Gb/s)
Summary

- Address and Data Buffers commonly used to improve pin-bandwidth/capacity of workstation and server platforms
 - Multitudes of high-speed-serdes-to-DDRx solutions have been implemented – AMB (FBDIMM), BoB
 - Multitudes of DDRx-to-DDRx also implemented

- Memory Buffers CAN do a lot more, but “doing more” typically means “higher cost”.
 - Standard buffers are typically cost-optimized solutions

- New Buffering concepts are being explored/implemented to do “interesting” things
 - DRAM + NAND backup as NVDIMM for power-failure protection
 - NAND-only Flash DIMM enables Flash devices to sit on DDR memory bus
 - Use of new memory technology (MRAM, PCM, ReRAM) on DDRx memory bus