Terminology: Denoted and Expressed Values

e A denoted value is the meaning of a variable

 An expressed value is the result of an expression

The set of denoted and expressed values can be different

Terminology: Denoted and Expressed Values

 First-order functions
o denoted values: numbers and functions
o expressed values: numbers

« Higher-order functions
o denoted values: numbers and functions

o expressed values: numbers and functons

Procedure Expressions: Concrete Syntax

<prog> = <expr>
<expr> := proc (<id>*") <expr>
(<expr> <expr>*)

let identity = proc(Xx) x
In (identity 5)

Procedure Expressions: Abstract Syntax

<prog> := (a-program <expr>)
<expr> .= (proc-exp (list <id>*) <expr>)
= (app-exp <expr> (list <expr>*))
<val> = <num> | <proc>
<proc> := (closure (list <id>*) <expr> <env>)
(a-program

(let-exp (list 'identity)
(list (proc-exp (list 'x) (var-exp 'x)))
(app-exp (var-exp 'identity) (list-exp 5))))

Implementing Procedures
(implementation in DrScheme)

New representation of environments:

(defi ne-dat at ype environnent environnment ?
(enpty-env-record)
(ext ended- env-record
(syns (list-of synbol ?))
(vals (list-of denval ?))
(env environnment?)))

Recursion
Suppose we try to write the fact function using only let

let fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

The above doesn't work, because fact is not bound in the local
function

We'll add letrec, but first we'll see how to implement fact without it...

Recursion with Let

* Problem: fact can't see itself
* Note: anyone calling fact can see fact

. have the caller supply fact to fact (along with a number)

let fact = proc(n, f) if n then *(n, (f -(n, 1) f)) else 1
In (fact 10 fact)

this works!

9-13

What Happened?

* The key insight is delaying some work to the caller

* We can exploit this idea to implement letrec, but in a slightly
different way

* letrec requires a closure that refers to itself

 We can delay the actual construction of the closure until it is
extracted from the environment

14-15

Recursive Environments for Recursive Functions

»O

This isn't going to work

let fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
in (fact 10)

16

Recursive Environments for Recursive Functions

»O

let fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

17

Recursive Environments for Recursive Functions

»0,

n/if n then *(n, (fact -(n, 1))) else 1|®

let fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Recursive Environments for Recursive Functions

Qe

mp(fact/® »n|if n then *(n, (fact -(n, 1))) else 1|®

let fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Recursive Environments for Recursive Functions

fact|e| >n|if n then *(n, (fact -(n, 1))) else 1[®

let fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

20

Recursive Environments for Recursive Functions

fact|e| >n|if n then *(n, (fact -(n, 1))) else 1[®

No binding for fact

let fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

21

Recursive Environments for Recursive Functions

»O

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

22

Recursive Environments for Recursive Functions

%

mp|fact|njif n then *(n, (fact -(n, 1))) else 1

double box means a recursively
extended environment

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

23

Recursive Environments for Recursive Functions

%

mp|fact|njif n then *(n, (fact -(n, 1))) else 1

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Recursive Environments for Recursive Functions

%

mp|fact|njif n then *(n, (fact -(n, 1))) else 1

n/if n then *(n, (fact -(n, 1))) else 1|®

every lookup of fact
generates a closure

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

25

Recursive Environments for Recursive Functions

%

mp|fact|njif n then *(n, (fact -(n, 1))) else 1

n/if n then *(n, (fact -(n, 1))) else 1|®

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Recursive Environments for Recursive Functions

%

fact|n|if n then *(n, (fact -(n, 1))) else 1

— 7
nmhen *(n, (fact -(n, 1)) else 1|®

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Recursive Environments for Recursive Functions

%

fact|n|if n then *(n, (fact -(n, 1))) else 1

— 7
nmhen *(n, (fact -(n, 1)) else 1|®

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Recursive Environments for Recursive Functions

%

fact|n|if n then *(n, (fact -(n, 1))) else 1

— 7
nmhen *(n, (fact -(n, 1)) else 1|®

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Recursive Environments for Recursive Functions

%

fact|n|if n then *(n, (fact -(n, 1))) else 1

— 7
nmhen *(n, (fact -(n, 1)) else 1|®

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Recursive Environments for Recursive Functions

%

fact|n|if n then *(n, (fact -(n, 1))) else 1

— 7
nmhen *(n, (fact -(n, 1))) else 1+

n/if n then *(n, (fact -(n, 1))) else 1|®

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Recursive Environments for Recursive Functions

%

fact|n|if n then *(n, (fact -(n, 1))) else 1

— 7
nmhen *(n, (fact -(n, 1))) else 1+

n/if n then *(n, (fact -(n, 1))) else 1|®

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Recursive Environments for Recursive Functions

%

fact|n|if n then *(n, (fact -(n, 1))) else 1

_
nmbén *(n, (fact -(n, 1))) else 1+

n/if n then *(n, (fact -(n, 1))) else 1|®

mn|(o

letrec fact = proc(n) if n then *(n, (fact -(n, 1))) else 1
In (fact 10)

Implementing Recursively Extended Envs

(defi ne-dat at ype environnent environnment ?
(enpty-env-record)
(ext ended- env-record
(syns (list-of synbol ?))
(vals (list-of denval ?))
(env environnent ?))
(recursivel y-ext ended-env-record
(proc-nanes (list-of synbol ?))
(1dss (list-of (list-of synbol ?)))
(bodies (li1st-of expression?))
(env environnment?)))

34

Implementing letrec

(implement in DrScheme)

35

Back to Recursion with Let...

 Allowing functions to be values is a powerful idea

e As It turns out, we don't even need let!

let <id>; = <expr>; ... <id>, = <expr>, in <expr>
IS the same as

(proc(<id>y, ... <id>,) <expr> <expr>; ... <expr>,)

36-37

Back to Recursion with Let...

 Allowing functions to be values is a powerful idea

e As It turns out, we don't even need let!

(let ([<id>; <expr>q] ... [<Id>, = <expr>,]) <expr>)
IS the same as

((lambda (<id>; ... <id>,) <expr>) <expr>; ... <expr>,)

38

The Lambda Calculus

 We don't even need functions of multiple arguments...

((lambda (<id>; ... <id>,) <expr>)
<expr>; ... <expr>,)

IS the same as

(((lambda (<id>,) ... (lambda (<id>,) <expr>))
<expr>;) ...
<expr>)

Passing multiple arguments one-at-a-time is called currying

The lambda calculus has only single-argument lambda and
single-argument function calls, and it's computationally complete

39-41

