
Opening Thought

Why must functions always have a name?

1

Anonymous Functions

From now on, functions can be anonymous

• Old code

(define (eval-rands rands env fenv)
 (let ([eval-one (lambda (rand)
 (eval-expression rand env fenv))])
 (map eval-one rands)))

• New code

(define (eval-rands rands env fenv)
 (map (lambda (rand) (eval-expression rand env fenv))
 rands))

2

Lambda as an Expression

To suport anonymous functions, we must first

• allow (lambda (<id>*) <expr>) as an expression

• change the application grammar to (<expr> <expr>*)

<expr> ::= <num>
::= <id>
::= (+ <expr> <expr>)
::= (let ([<id> <expr>]*) <expr>)
::= (<expr> <expr>*)
::= (lambda (<id>*) <expr>)

<val> ::= <num>
::= (lambda (<id>*) <expr>)

3-5

Evaluation with Lambda Expressions

Now we need only one kind of let form

(let ([identity (lambda (x) x)])
 (identity 5))

→

((lambda (x) x) 5) usual substitution with values

→

5 new procedure application rule...

6-8

New Application Rule

... ((lambda (<id>1...<id>k) <expr>a) <val>1...<val>k) ...

→

... <expr>b ...

where <expr>b is <expr>a with free <id>i replaced by <val>i

((lambda (x) x) 5) → 5

9-10

New Application Rule

... ((lambda (<id>1...<id>k) <expr>a) <val>1...<val>k) ...

→

... <expr>b ...

where <expr>b is <expr>a with free <id>i replaced by <val>i

((lambda (x y) (+ x y)) 2 3) → (+ 2 3) → 5

11

Using Anonymous Functions

Using anonymous functions, we can easily feed a list of fish:

;; feed all fish 1 lb of food:
(map (lambda (x) (+ x 1)) '(4 5 8))
 = '(5 6 9)

;; feed all fish 2 lbs of food:
(map (lambda (x) (+ x 2)) '(5 6 9))
 = '(7 8 11)

12-13

Using Anonymous Functions

Using anonymous functions, we can easily feed a list of fish:

;; feed all fish 1 lb of food:
(map (lambda (x) (+ x 1)) '(4 5 8))
 = '(5 6 9)

;; feed all fish 2 lbs of food:
(map (lambda (x) (+ x 2)) '(5 6 9))
 = '(7 8 11)

Avoid cut-and-paste of the lambda expression?

14

Functions that Return Functions

;; make-feeder : <num> → (<num> → <num>)
(define (make-feeder amt)
 (lambda (x) (+ x amt)))

;; feed all fish 1 lb of food:
(map (make-feeder 1) '(4 5 8))
 = '(5 6 9)

;; feed all fish 2 lbs of food:
(map (make-feeder 2) '(5 6 9))
 = '(7 8 11)

15

Another Example with Procedures as Values

(let ([mk-add (lambda (x) (lambda (y) (+ x y)))])
 (let ([add5 (mk-add 5)])
 (add5 7)))
→
(let ([add5 ((lambda (x) (lambda (y) (+ x y))) 5)])
 (add5 7))
→
(let ([add5 (lambda (y) (+ 5 y))])
 (add5 7))
→
((lambda (y) (+ 5 y)) 7)
→
(+ 5 7) → 12

16

Teminology: First-Order and Higher-Order

• The procedures supported by top-level definitions are first-order
procedures

A procedure cannot consume or produce a procedure

Methods in Java and procedures in Fortran are first-order

Functions C are first-order, but function pointers are values

17

Teminology: First-Order and Higher-Order

• The procedures supported by lambda are higher-order
procedures

A procedure can return a procedure that returns a procedure
that consumes a procedure that returns a procedure...

Procedures in Scheme are higher-order

18

Procedure Expressions in the Book Language

Concrete extensions:

<prog> ::= <expr>
<expr> ::= proc (<id>*(,)) <expr>

::= (<expr> <expr>*)

let identity = proc(x) x
 in (identity 5)
→→ 5

19-20

Procedure Expressions in the Book Language

Concrete extensions:

<prog> ::= <expr>
<expr> ::= proc (<id>*(,)) <expr>

::= (<expr> <expr>*)

let sum = proc(x, y, z) +(x, +(y, z))
 in (sum 10 20 30)
→→ 60

21

Procedure Expressions in the Book Language

Concrete extensions:

<prog> ::= <expr>
<expr> ::= proc (<id>*(,)) <expr>

::= (<expr> <expr>*)

(proc(x) x 5)
→→ 5

22

Procedure Expressions in the Book Language

Concrete extensions:

<prog> ::= <expr>
<expr> ::= proc (<id>*(,)) <expr>

::= (<expr> <expr>*)

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in let x = 10
 in (add5 6)

→→ 11

23-24

Evaluation with Environments

Expr Env

let x = +(2, 3)
 in x

{ }

• This trace shows the expression and environment arguments to
eval-expresson

25

Evaluation with Environments

Expr Env

let x = +(2, 3)
 in x

{ }

+(2, 3) { }

• Arrows show nested recursive calls

26

Evaluation with Environments

Expr Env

let x = +(2, 3)
 in x

{ }

5 { }

27

Evaluation with Environments

Expr Env

let x = +(2, 3)
 in x

{ }

5 { }

• Eventually a value is reached for each recursive call

• To continue with let, extend the environment and evaluate the body

28

Evaluation with Environments

Expr Env

x { x = 5 }

• Drop the context for the recursive body evaluation, since it isn't
needed

29

Evaluation with Environments

Expr Env

5 { x = 5 }

30

Evaluation with Environments

Expr Env

let x = 5
 in let x = 6
 in x

{ }

• Another example: nested let

31

Evaluation with Environments

Expr Env

let x = 5
 in let x = 6
 in x

{ }

5 { }

32

Evaluation with Environments

Expr Env

let x = 5
 in let x = 6
 in x

{ }

5 { }

33

Evaluation with Environments

Expr Env

let x = 6
 in x

{ x = 5 }

34

Evaluation with Environments

Expr Env

let x = 6
 in x

{ x = 5 }

6 { x = 5 }

35

Evaluation with Environments

Expr Env

let x = 6
 in x

{ x = 5 }

6 { x = 5 }

• New value for x replaces the old one for the body

36

Evaluation with Environments

Expr Env

x { x = 6 }

37

Evaluation with Environments

Expr Env

6 { x = 6 }

38

Evaluation with Environments

Expr Env

let x = 5
 in let y = let x = 6 in x
 in x

{ }

• Another example: let nested in a different way

39

Evaluation with Environments

Expr Env

let x = 5
 in let y = let x = 6 in x
 in x

{ }

5 { }

40

Evaluation with Environments

Expr Env

let x = 5
 in let y = let x = 6 in x
 in x

{ }

5 { }

41

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x

{ x = 5 }

42

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x

{ x = 5 }

let x = 6 in x { x = 5 }

43

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x

{ x = 5 }

let x = 6 in x { x = 5 }

6 { x = 5 }

44

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x

{ x = 5 }

let x = 6 in x { x = 5 }

6 { x = 5 }

45

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x

{ x = 5 }

x { x = 6 }

46

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x

{ x = 5 }

6 { x = 6 }

47

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x

{ x = 5 }

6 { x = 6 }

• What environment is extended with y = 6?

48

Evaluation with Environments

Expr Env

let y = let x = 6 in x
 in x

{ x = 5 }

6 { x = 6 }

• Answer: the original one for the let of y

49

Evaluation with Environments

Expr Env

x { x = 5, y = 6 }

50

Evaluation with Environments

Expr Env

5 { x = 5, y = 6 }

51

Evaluation with Procedures and Environments

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

52

Evaluation with Procedures and Environments

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

proc(x) proc(y) +(x, y) {}

• Is a proc expression a value?

• A lambda was a value in Scheme... so let's say it's ok

this choice will turn out to be slightly wrong

53-55

Evaluation with Procedures and Environments

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

proc(x) proc(y) +(x, y) {}

56

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = proc(x) proc(y) +(x, y) }

57

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = proc(x) proc(y) +(x, y) }

(mkadd 5) { mkadd = proc(x) proc(y) +(x, y) }

58

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = proc(x) proc(y) +(x, y) }

(mkadd 5) { mkadd = proc(x) proc(y) +(x, y) }

mkadd { mkadd = proc(x) proc(y) +(x, y) }

59

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = proc(x) proc(y) +(x, y) }

(mkadd 5) { mkadd = proc(x) proc(y) +(x, y) }

proc(x) proc(y) +(x, y) { mkadd = proc(x) proc(y) +(x, y) }

60

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = proc(x) proc(y) +(x, y) }

(mkadd 5) { mkadd = proc(x) proc(y) +(x, y) }

proc(x) proc(y) +(x, y) { mkadd = proc(x) proc(y) +(x, y) }

5 { mkadd = proc(x) proc(y) +(x, y) }

61

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = proc(x) proc(y) +(x, y) }

(mkadd 5) { mkadd = proc(x) proc(y) +(x, y) }

proc(x) proc(y) +(x, y) { mkadd = proc(x) proc(y) +(x, y) }

5 { mkadd = proc(x) proc(y) +(x, y) }

• To evaluate an application, extend the application's environment
with a binding for the argument

this isn't quite right, either

62-63

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = proc(x) proc(y) +(x, y) }

proc (y) +(x, y)
{ mkadd = proc(x) proc(y) +(x, y)
 x = 5 }

64

Evaluation with Procedures and Environments

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = proc(x) proc(y) +(x, y) }

proc (y) +(x, y)
{ mkadd = proc(x) proc(y) +(x, y)
 x = 5 }

• So the value for add5 is also a procedure

• Extend the original environment for the let

65

Evaluation with Procedures and Environments

Expr Env

(add5 6)
{ mkadd = proc(x) proc(y) +(x, y)
 add5 = proc (y) +(x, y) }

• We can see where this is going... x has no value

• What went wrong?

66

Evaluation with Procedures and Environments

Expr Env

(add5 6)
{ mkadd = proc(x) proc(y) +(x, y)
 add5 = proc (y) +(x, y) }

• In Scheme, procedures as values worked because they had eager
substitutions

67

Evaluation with Procedures and Environments

Expr Env

(add5 6)
{ mkadd = proc(x) proc(y) +(x, y)
 add5 = proc (y) +(x, y) }

• With lazy substitutions: combine a proc and an environment to get
a value

• The combination is called a closure

68

Evaluation with Closures

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

69

Evaluation with Closures

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

proc(x) proc(y) +(x, y) {}

70

Evaluation with Closures

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

<proc(x) proc(y) +(x, y), { }> {}

• Create a closure with the current environment to get a value

71

Evaluation with Closures

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

<(x), proc(y) +(x, y), { }> {}

• Alternate form: arguments, body, and environment

72

Evaluation with Closures

Expr Env

let mkadd = proc(x) proc(y) +(x, y)
 in let add5 = (mkadd 5)
 in (add5 6)

{ }

<(x), proc(y) +(x, y), { }> {}

• A closure is a value

73

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = <(x), proc(y) +(x, y), { }> }

74

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = <(x), proc(y) +(x, y), { }> }

(mkadd 5) { mkadd = <(x), proc(y) +(x, y), { }> }

75

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = <(x), proc(y) +(x, y), { }> }

(mkadd 5) { mkadd = <(x), proc(y) +(x, y), { }> }

mkadd { mkadd = <(x), proc(y) +(x, y), { }> }

76

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = <(x), proc(y) +(x, y), { }> }

(mkadd 5) { mkadd = <(x), proc(y) +(x, y), { }> }

<(x), proc(y) +(x, y), { }> { mkadd = <(x), proc(y) +(x, y), { }> }

77

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = <(x), proc(y) +(x, y), { }> }

(mkadd 5) { mkadd = <(x), proc(y) +(x, y), { }> }

<(x), proc(y) +(x, y), { }> { mkadd = <(x), proc(y) +(x, y), { }> }

5 { mkadd = <(x), proc(y) +(x, y), { }> }

78

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = <(x), proc(y) +(x, y), { }> }

(mkadd 5) { mkadd = <(x), proc(y) +(x, y), { }> }

<(x), proc(y) +(x, y), { }> { mkadd = <(x), proc(y) +(x, y), { }> }

5 { mkadd = <(x), proc(y) +(x, y), { }> }

• To evaluate an application, extend the closure's environment with a
binding for the argument

79

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = <(x), proc(y) +(x, y), { }> }

proc (y) +(x, y) { x = 5 }

80

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = <(x), proc(y) +(x, y), { }> }

<(y), +(x, y), { x = 5 }> { x = 5 }

• Again, create a closure

• Note that the x binding is saved in the closure

81

Evaluation with Closures

Expr Env

let add5 = (mkadd 5)
 in (add5 6)

{ mkadd = <(x), proc(y) +(x, y), { }> }

<(y), +(x, y), { x = 5 }> { x = 5 }

82

Evaluation with Closures

Expr Env

(add5 6)
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

83

Evaluation with Closures

Expr Env

(add5 6)
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

add5
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

84

Evaluation with Closures

Expr Env

(add5 6)
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

<(y), +(x, y), { x = 5 }>
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

85

Evaluation with Closures

Expr Env

(add5 6)
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

<(y), +(x, y), { x = 5 }>
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

6
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

86

Evaluation with Closures

Expr Env

(add5 6)
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

<(y), +(x, y), { x = 5 }>
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

6
{ mkadd = <(x), proc(y) +(x, y), { }>
 add5 = <(y), +(x, y), { x = 5 }> }

• Extend the closure's environment { x = 5 } with a binding for y

87

Evaluation with Closures

Expr Env

+(x, y) { x = 5, y = 6 }

• This is clearly going to work

88

Environments in Picture Form

top purple arrow points to
the current environment

purple in bottom area hilites
the current expression

let x = 1 y = 2
 in +(x, y)

89

Environments in Picture Form

x 1
y 2

top purple arrow points to
the current environment

purple in bottom area hilites
the current expression

let x = 1 y = 2
 in +(x, y)

90

Environments in Picture Form

let x = 1 y = 2
 in let f = proc (z) +(z, y)
 in (f y)

91

Environments in Picture Form

x 1
y 2

let x = 1 y = 2
 in let f = proc (z) +(z, y)
 in (f y)

92

Environments in Picture Form

x 1
y 2

let x = 1 y = 2
 in let f = proc (z) +(z, y)
 in (f y)

93

Environments in Picture Form

x 1
y 2

z +(z, y)

let x = 1 y = 2
 in let f = proc (z) +(z, y)
 in (f y)

94

Environments in Picture Form

x 1
y 2

f z +(z, y)

let x = 1 y = 2
 in let f = proc (z) +(z, y)
 in (f y)

95

Environments in Picture Form

x 1
y 2

f z +(z, y)

z 2

let x = 1 y = 2
 in let f = proc (z) +(z, y)
 in (f y)

96

Procedure Expressions in the Book Language

Abstract extensions:

<prog> ::= (a-program <expr>)
<expr> ::= (proc-exp (list <id>*) <expr>)

::= (app-exp <expr> (list <expr>*))
<val> ::= <num>

::= <proc>
<proc> ::= (closure (list <id>*) <expr> <env>)

97

