Today

1. Add top-level function defines to the Book language

© not Iin the book

Before we implement local functions...
2. How to design better programs with local functions

o also not in the book, but in HtDP



Top-Level Procedure Definitions

Concrete syntax:

<prog> = {<id> <funcdef> } * Iin <expr>
<funcdef> .= (<id>*) = <expr>
<expr> = (<id> <expr>*)

identity(x) = X
In (identity 7)



Top-Level Procedure Definitions

Concrete syntax:

<prog> .= {<id> <funcdef> } * in <expr>
<funcdef> .= (<id>*) = <expr>
<expr> = (<id> <expr>*)

fact(n) = if n then *(n, (fact -(n, 1))) else 1
Identity(x) = X
In (identity (fact 10))



Top-Level Procedure Definitions

Abstract syntax:

<prog> .= (a-program

(list <id>*) (list <funcdef>*) <expr>)
<funcdef> := (a-funcdef (list <id>*) <expr>)
<expr> = (app-exp <id> (list <expr>*))

 When evaluating a procedure application, we'll need a way to find a
defined procedure

© Use an environment (so we have two: local and top-level)



Implementing Top-Level Procedure Definitions

(implement in DrScheme)



How to Design Better Programs

Let's open an aquarium

o At first, we only care about the weight of each fish
* Represent a fish as a number

* Represent the aquarium as a list of numbers

« Functions include big, which takes an aquarium and returns only
the fish bigger than 5 pounds



Agquarium Functions

Start with a template (generic):

;; lon-function : <list-of-num> - <?7?7?>
(define (lon-function I)

(cond

[(null? 1) ...]

[(pair? 1) ... (car ) ... (lon-function (cdr 1)) ...]))

10



Getting the Big Fish

;; big : <l-o-n> - <l-0-n>
(define (big I)
(cond
[(null? 1) "()]
[(pair? 1)
(cond
[(> (car |) 5) (cons (car |) (big (cdr |)))]

[else (big (cdr 1)])])

(big '(2 4 10)) - '(10)



Getting the Small Fish

.y small : <l-o-n> - <l-0-n>
(define (small 1)
(cond

[(null? 1) "(]

[(pair? |)

(cond
[(< (car |) 5) (cons (car |) (small (cdr 1)))]
[else (small (cdr 1))])]))

* Tiny changes to big, so cut-and-paste old code?



A Note on Cut and Paste

When you cut and paste code, you cut and paste bugs

Avoid cut-and-paste whenever possible!

 Alternative to cut and paste: abstraction

15-16



Filtering Fish

- filter-fish : (<num> <num> - <bool>) <l-0-n> - <l-0-n>
(define (filter-fish OP [)
(cond

[(null? 1) "0]
[(pair? |)
(cond
[(OP (car 1) 5) (cons (car |) (filter-fish OP (cdr 1)))]

[else (filter-fish OP (cdr N))D])
(define (big |) (filter-fish > 1))
(define (small |) (filter-fish <1))



More Filters

e Medium fish?
No problem:

(define (medium 1) (filter-fish =1))

20-21



More Filters

 How about fish that are roughly medium, between 4 and 6 pounds?

close-to : <num> <num> - <bool>

(define (close-to n m)
(@and (>=n (- m 1)) (<=n (+ m 1)))

(define (roughly-medium 1) (filter-fish close-to |))

Remember: function names are values!

Note the contract for close-to

22-24



More Filters

 How about 2-pound fish?
Abstract filter-fish with respect to the number 57

- filter-fish : ... <num> <l-o-n> - <l-0-n>
(define (filter-fish OP N I)
(cond

[(null? ) '(]
[(pair? 1)
(cond
[(OP (car I) N) (cons (car |) (filter-fish OP N (cdr I)))]

[else (filter-fish OP N (cdr D)])])

25-26



More Filters

 How about 2-pound fish?
Abstract filter-fish with respect to the number 57
 How about fish that are either 2 pounds or 4 pounds?
Actually, we can write either of those already:
(define (size-2-or-4 n m)
(or (=n2)(=n4));ignores m
(define (2-or-4-fish |) (filter-fish size-2-or-4 1))

This suggests a simplification of filter-fish

27-29



Filter

;; filter : (<num> - <bool>) <l-0-n> - <l-0-n>
(define (filter PRED )
(cond

[(null? 1) "()]

[(pair? 1)

(cond
[(PRED (car I)) (cons (car |) (filter PRED (cdr |)))]
[else (filter PRED (cdr D)D])

(define (greater-than-5 n)
(>n 5))

(define (big |) (filter greater-than-51))



Local Helpers

Since only big needs to use greater-than-5, make it local:

(define (big |)
(let ([greater-than-5 (lambda (n) (> n 5))])
(filter greater-than-51))

e Suppose we move to Texas, where "big" means more than 10
pounds

(define (texas-big I)
(let ([greater-than-10 (lambda (n) (> n 10))])
(filter greater-than-10 I))

More cut-and-paste?!

32-34



Abstraction over Local Functions

(define (relatively-big | m)
(let ([greater-than-m (lambda (n) (> n m))])
(filter greater-than-m I))

(define (big I) (relatively-big | 5))
(define (texas-big |) (relatively-big | 10))

(big ‘(248 11)) ='(8 11)
(texas-big '(24 8 11)) ='(11)

How does that work?

35-37



Evaluation with Local Functions

(define (rel-big | m) — (define (rel-big | m)
(let ([gt-m (A (n) (> n m))]) (let ([gt-m (A (n) (> n m))])
(filter gt-m 1)) (filter gt-m 1))
(define (big 1) (define (big 1)
(rel-big | 5)) (rel-big | 5))

(big '(2 4 8)) (rel-big '(2 4 8) 5)



Evaluation with Local Functions

(define (rel-big | m) — (define (rel-big | m)
(let ([gt-m (A (n) (> n m))]) (let ([gt-m (A (n) (> n m))])
(filter gt-m 1)) (filter gt-m 1))
(define (big 1) (define (big 1)
(rel-big | 5)) (rel-big | 5))
(rel-big '(2 4 8) 5) (let ([gt-m (A (n) (> n 5))])

(filter gt-m '(2 4 8))



Evaluation with Local Functions

(define (rel-big | m) — (define (rel-big | m)
(let ([gt-m (A (n) (> n m))]) (let ([gt-m (A (n) (> n m))])
(filter gt-m 1)) (filter gt-m 1))
(define (big 1) (define (big I)
(rel-big | 5)) (rel-big | 5))
(let ([gt-m (A (n) (> n 3))]) (define (gt-mgs N) (> n 5))))

(filter gt-m '(2 4 8))
(filter gt-mgyg (2 4 8))

Every time we call rel-big we get a brand-new gt-m



Filter and Map

A function like filter is so useful that it's usually built in
© But not Iin the EoPL langugae, unfortunately
* Here's one that's even more useful (and is built in):

;; map : (<num> - <num>) <list-of-num> - <list-of-num>
(define (map F I)
(cond

[((null? 1) 0]
[else (cons (F (car |)) (map F (cdr 1)))]))

(map add1'(12 3)) ='(2 3 4)

42-43



Map, More Generally
Actually, map is more general
> map : (X - Y) list-of-X - list-of-Y

(map even? '(1 2 3)) = "(#f #t #f)
(mapcar'((12)(34)(56)))="'(135)

Actually, map is more general!

s map : (X; ... X, > Y)Il-0-X; ... I-0-X,, - l-0-Y

(map +'(123)'(456))="(579)
(map cons '(1 2 3) '(#f #f #t)) = (1 . #) (2 . #f) (3 . #1))

44- 45



Closing Thought

Why must functions always have a name?

46



