
Interpreter with Continuations

(define (eval-expression exp env cont)
 (cases expression exp
 (lit-exp (datum)
 (apply-cont cont datum))
 (var-exp (id)
 (apply-cont cont (apply-env env id)))
 (proc-exp (id body-exp)
 (apply-cont cont
 (closure id body-exp env)))
 ...))

(define (apply-cont cont val)
 (cases continuation cont
 (done-cont () val)
 ...))

1

Continuations and Gotos

(define (eval-expression exp env cont)
 (cases exp ...
 (proc-exp (id body-exp)
 (apply-cont cont
 (closure id body-exp env)))

=>

;; registers:
(define EXP ...) (define CONT ...) ...

(define (eval-expression)
 (cases EXP ...
 (proc-exp (id body-exp)
 (set! VAL (closure id body-exp ENV))
 ;; CONT stays the same
 (apply-cont)) ; "goto" 2

Continuations and Gotos

(define (eval-expression exp env cont)
 (cases exp...
 (app-exp (rator rand)
 (eval-expression
 rator env
 (app-arg-cont rand env cont)))

=>

(define (eval-expression)
 (cases EXP ...
 (app-exp (rator rand)
 (set! EXP rator)
 ;; ENV stays the same
 (set! CONT (app-arg-cont rand ENV CONT))
 (eval-expression)) ; "goto"

3

Continuations and Gotos

• Registers and gotos explain why the following program never
generates a stack overflow:

let f = proc(f) proc(n) ((f f) n)
 in ((f f) 0)

• So, can we compute arbitrarily deep recursions?

let f = proc(f)
 proc(n)
 if n then +(1, ((f f) -(n, 1)))
 else 0
 in ((f f) 1000000000)

No...

4-6

Allocation

• We've avoided stack allocation

• But we still have to allocate

continuation records

closures

environment records

7-8

Allocation

• Where do we call malloc?

(define (eval-expression)
 (cases EXP ...
 (proc-exp (id body-exp)
 (set! VAL (closure id body-exp ENV))
 ;; CONT stays the same
 (apply-cont))
 (app-exp (rator rand)
 (set! EXP rator)
 ;; ENV stays the same
 (set! CONT (app-arg-cont rand ENV CONT))
 (eval-expression))
 ...

9

Allocation

• Where do we call malloc?

(define (eval-expression)
 (cases EXP ...
 (proc-exp (id body-exp)
 (set! VAL (closure id body-exp ENV))
 ;; CONT stays the same
 (apply-cont))
 (app-exp (rator rand)
 (set! EXP rator)
 ;; ENV stays the same
 (set! CONT (app-arg-cont rand ENV CONT))
 (eval-expression))
 ...

10

Exposing Allocation

(define (closure id body env)
 (let ([v (malloc 4)])
 (mem-set! v 0 closure-tag)
 (mem-set! v 1 id)
 (mem-set! v 2 body)
 (mem-set! v 3 env)
 v))

(define (closure? v)
 (= (mem-ref v 0) closure-tag))

(define (closure->id v)
 (mem-ref v 1))
...

11

Memory Allocator

(define memory (make-vector 200))
(define allocated 0)

(define (malloc size)
 (let ([result allocated])
 (set! allocated (+ allocated size))
 result))

(define (mem-set! a n v)
 (vector-set! memory (+ a n) v))

(define (mem-ref a n)
 (vector-ref memory (+ a n)))

12

Exposing Allocation

• Use of malloc explains why the following program runs out of
memory:

let f = proc(f)
 proc(n)
 if n then +(1, ((f f) -(n, 1)))
 else 0
 in ((f f) 1000000000)

• Each call to (f f) extends the continuation

• Eventually, the continuation fills all memory

13-14

Exposing Allocation

• Does the following program run forever?

let f = proc(f) proc(n) ((f f) n)
 in ((f f) 0)

• Each call to (f f)

creates an extended environment

creates a new closure

We need deallocation

15-17

Deallocation

• Where do we call free?

(define (apply-cont)
 (cond ...
 [(app-cont? CONT)
 (let ([rator (app-cont->rator CONT)]
 [old-cont (app-cont->cont CONT)])
 (set! EXP (closure->body rator))
 (set! ENV (extend-env
 (closure->id rator)
 VAL
 (closure->env rator)))
 (set! CONT old-cont))
 (eval-expression)]
 ...

18

Deallocation

• Where do we call free?

(define (apply-cont)
 (cond ...
 [(app-cont? CONT)
 (let ([rator (app-cont->rator CONT)]
 [old-cont (app-cont->cont CONT)])
 (set! EXP (closure->body rator))
 (set! ENV (extend-env
 (closure->id rator)
 VAL
 (closure->env rator)))
 (free CONT) ;; unless letcc'd!
 (set! CONT old-cont))
 (eval-expression)]
 ...

19

Deallocation

• Where do we call free?

(define (apply-cont)
 (cond ...
 [(app-cont? CONT)
 (let ([rator (app-cont->rator CONT)]
 [old-cont (app-cont->cont CONT)])
 (set! EXP (closure->body rator))
 (free ENV) ;; unless in a closure!
 (set! ENV (extend-env
 (closure->id rator)
 VAL
 (closure->env rator)))
 (set! CONT old-cont))
 (eval-expression)]
 ...

20

Reference Counting

Reference counting: a way to know whether a record has other
users

• Attatch a count to every record, start at 0

• When installing a pointer to a record (into a register, or another
record), increment its count

• When replacing a pointer to a record, decrement its count

• When a count is decremented to 0, decrement counts for other
records referenced by the record, then free it

21-22

Reference Counting

1
1

1

1

2

1
1

• Top boxes are the registers
ENV, CONT, etc.

• Boxes in the blue area are
allocated with malloc

23

Reference Counting

1
1

0

1

3

1
1

• Adjust counts when a pointer
is changed...

24

Reference Counting

1
1

1

2

1
1

• ... freeing a record if its count
goes to 0

25

Reference Counting

1
1

0

2

1
1

• Same if the pointer is in a
register

26

Reference Counting

1
1

2

0
1

• Adjust counts after frees,
too...

27

Reference Counting

1
1

2

1

• ... which can trigger more
frees

28

Reference Counting

1
1

1

2

1
1

• Another example

29

Reference Counting

1
1

2

2

1
1

• Adding a reference
increments a count

30

Reference Counting

1
1

1

2

1
1

• Lower-left records are
inaccessible, but not
deallocated

• In general, cycles break
reference counting

31

Garbage Collection

Garbage collection: a way to know whether a record is accessible

• A record referenced by a register is live

• A record referenced by a live record is also live

• A program can only possibly use live records, because there is no
way to get to other records

• A garbage collector frees all records that are not live

• We'll allocate until we run out of memory, then run a garbage
collector to get more space

32-34

Garbage Collection Algorithm

• Color all records white

• Color records referenced by registers gray

• Repeat until there are no gray records:

Pick a gray record, r

For each white record that r points to, make it gray

Color r black

• Deallocate all white records

35

Garbage Collection

• All records are marked white

36

Garbage Collection

• Mark records referenced by
registers as gray

37

Garbage Collection

• Need to pick a gray record

• Red arrow indicates the
chosen record

38

Garbage Collection

• Mark white records
referenced by chosen record
as gray

39

Garbage Collection

• Mark chosen record black

40

Garbage Collection

• Start again: pick a gray
record

41

Garbage Collection

• No referenced records; mark
black

42

Garbage Collection

• Start again: pick a gray
record

43

Garbage Collection

• Mark white records
referenced by chosen record
as gray

44

Garbage Collection

• Mark chosen record black

45

Garbage Collection

• Start again: pick a gray
record

46

Garbage Collection

• No referenced white records;
mark black

47

Garbage Collection

• No more gray records;
deallocate white records

• Cycles do not break garbage
collection

48

Two-Space Copying Collectors

A two-space copying collector compacts memory as it collects,
making allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space

Collector:

• Starts by swapping to-space and from-space

• Coloring gray => copy from from-space to to-space

• Choosing a gray record => walk once though the new to-space,
update pointers

49

Two-Space Collection

Left = from-space
Right = to-space

50

Two-Space Collection

Mark gray = copy and leave
forward address

51

Two-Space Collection

Choose gray by walking
through to-space

52

Two-Space Collection

Mark referenced as gray

53

Two-Space Collection

Mark black = move
gray-choosing arrow

54

Two-Space Collection

Nothing to color gray;
increment the arrow

55

Two-Space Collection

Color referenced record gray

56

Two-Space Collection

Increment the gray-choosing
arrow

57

Two-Space Collection

Referenced is already copied,
use forwarding address

58

Two-Space Collection

Choosing arrow reaches the
end of to-space: done

59

Two-Space Collection

Right = from-space
Left = to-space

60

Two-Space Collection on Vectors

• Everything is a number:

Some numbers are immediate integers

Some numbers are pointers

• An allocated record in memory starts with a tag, followed by a
sequence of pointers and immediate integers

The tag describes the shape

61

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers
Tag 1: one integer
Tag 2: one pointer
Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

62

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers
Tag 1: one integer
Tag 2: one pointer
Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

63

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers
Tag 1: one integer
Tag 2: one pointer
Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

64

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers
Tag 1: one integer
Tag 2: one pointer
Tag 3: one integer, then one pointer

Register 1: 7 Register 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

To: 0 0 0 0 0 0 0 0 0 0 0 0 0

 ^

65

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers
Tag 1: one integer
Tag 2: one pointer
Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 0

From: 1 75 2 0 3 2 10 99 0 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

To: 3 2 2 0 0 0 0 0 0 0 0 0 0

 ^

66

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers
Tag 1: one integer
Tag 2: one pointer
Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 2 0 3 2 10 99 0 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

To: 3 2 2 1 75 0 0 0 0 0 0 0 0

 ^

67

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers
Tag 1: one integer
Tag 2: one pointer
Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

To: 3 2 5 1 75 2 0 0 0 0 0 0 0

 ^

68

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers
Tag 1: one integer
Tag 2: one pointer
Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

To: 3 2 5 1 75 2 0 0 0 0 0 0 0

 ^

69

Two-Space Vector Example

• 26-byte memory (13 bytes for each space), 2 registers
Tag 1: one integer
Tag 2: one pointer
Tag 3: one integer, then one pointer

Register 1: 0 Register 2: 3

From: 99 3 99 5 3 2 10 99 0 2 3 1 4

Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

To: 3 2 5 1 75 2 3 0 0 0 0 0 0

 ^

70

